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ABSTRACT
Accurate estimates of examination bias are crucial for unbiased

learning-to-rank from implicit feedback in search engines and rec-

ommender systems, since they enable the use of Inverse Propensity

Score (IPS) weighting techniques to address selection biases and

missing data. Unfortunately, existing examination-bias estimators

are limited to the Position-Based Model (PBM), where the exam-

ination bias may only depend on the rank of the document. To

overcome this limitation, we propose a Contextual Position-Based

Model (CPBM) where the examination bias may also depend on a

context vector describing the query and the user. Furthermore, we

propose an effective estimator for the CPBM based on intervention

harvesting. A key feature of the estimator is that it does not re-

quire disruptive interventions but merely exploits natural variation

resulting from the use of multiple historic ranking functions. Real-

world experiments on the ArXiv search engine and semi-synthetic

experiments on the Yahoo Learning-To-Rank dataset demonstrate

the superior effectiveness and robustness of the new approach.

CCS CONCEPTS
• Information systems→ Learning to rank.
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1 INTRODUCTION
While implicit feedback (e.g., clicks, dwell time) is an abundant and

attractive source of data in most information-retrieval applications

(e.g., personal search, email search, recommendation), its use for

learning-to-rank (LTR) is challenging due to its biased nature. To

address this bias problem, Joachims et al. [19] proposed a counter-

factual inference approach, providing an unbiased LTR framework
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via Empirical Risk Minimization. A key requirement for the effec-

tiveness of this approach is an accurate estimate of the examination

bias, which describes how likely a user is to discover a particular

result. For example, a result is less likely to be discovered at posi-

tion 10 than at position 1. Estimates of the examination bias enable

the use of Inverse Propensity Score (IPS) weighting techniques,

which make modeling and estimating examination bias equivalent

to propensity estimation for unbiased LTR.

There are two key limitations of existing propensity estimation

methods for LTR [3, 19, 27]. First, existing methods are restricted

to the Position-Based Model (PBM) [9], which only models how

examination changes with the rank of the result. Second, existing

methods treat all queries uniformly, even though the examination

bias is likely to vary from query to query. For example, users may

examine results in navigational queries (i.e., search queries entered

with the intention of finding a particular website or webpage) differ-

ently compared to informational queries (i.e., search queries for a

broad topic for which there could be thousands of relevant results).

To overcome these limitations, a naive approach would be to train

a separate PBM for each context – say one for navigational and

one for informational queries – simply by partitioning the data.

However, this is feasible only when there is a small number of

discrete contexts, and it does not apply to cases where contexts are

described by arbitrary feature vectors. The latter is a highly desir-

able use case, since it is natural to represent the context by features

describing the query (e.g., query length), features describing the

candidate set (e.g., size), and features describing the user (e.g., age).

In this paper, we address these limitations of the PBM and present

a new Contextual Position-Based Model (CPBM) that greatly ex-

tends the expressiveness of the PBM. Instead of having a single ex-

amination parameter for each rank that is shared among all queries,

we show how the CPBM can model examination dependent on

arbitrary context vectors through a deep network. Furthermore, we

present an AllPairs estimator [3] for learning CPBM models from

log data. For training, our estimator harvests implicit interventions

that are already available in most operational systems. In particu-

lar, the estimator only requires (not necessarily randomized) log

data from at least two ranking functions that were deployed on the

system in the past. The resulting deep network can then be used to

compute context-dependent propensities for LTR algorithms like

[1, 2, 19]. We evaluate the fidelity of the CPBM model and the effec-

tiveness of the estimator in real-world experiments on the ArXiv

full-text search engine and in semi-synthetic experiments on the

Yahoo Learning-to-Rank Challenge dataset [7].
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2 RELATEDWORK
In most information retrieval systems, large amounts of implicit

feedback are logged automatically and serve as an attractive source

of training data. However, it is known that this type of data suffers

from various biases due to both the system and the user, such as

position bias [17], presentation bias [22] and trust bias [18].

To handle biases in a principled way, Joachims et al. [19] intro-

duced an unbiased learning-to-rank framework, which is a con-

sistent learning approach despite biased feedback. It relies on IPS

weighting first developed in causal inference and survey sampling

[15, 24]. IPS has been commonly adopted for unbiased evaluation

and learning [1, 2, 12, 21, 25]. However, because the propensity in

the unbiased LTR setting represents the unknown bias with which

a user examines a document, this propensity needs to be estimated.

Existing propensity-estimation methods for LTR are based on the

Position-Based Model (PBM) [23]. The most effective methods use

randomized interventions [19, 26], which unfortunately degrade

the user’s search experience. To avoid such interventions, Wang

et al. [27] proposed a regression-based Expectation-Maximization

(EM) algorithm, and Ai et al. [4] proposed a learning algorithm that

learns propensity models together with the ranking model. Unfor-

tunately, both approaches involve learning an accurate relevance

model, which is just as hard as the LTR problem itself. The approach

of Agarwal et al. [3] avoids both randomized interventions and rel-

evance modeling by exploiting click data from multiple loggers as

implicit interventions. In our work, we extend their approach to the

Contextual Position-Based Model (CPBM) for improved accuracy.

Beyond the PBM, many other click models for ranked search

exist. However, they were designed for inferring relevance, not

propensities. One example is the Cascade model [10], where users

scan documents top-down until a relevant document is found. Built

upon the PBM and the Cascade model, more complex models like

UBM [13], DBN [8], CCM [14] and CSM [6] were proposed to infer

relevance judgments from click logs. It is an open question in how

far these models can be adapted for propensity estimation as well.

3 THE CONTEXTUAL POSITION-BASED
MODEL

Modeling the examination bias is crucial for learning to rank from

implicit feedback, since it confounds the feedback signal.We start by

reviewing the Position-Based Model, as it is arguably the simplest

model for correcting the examination bias in learning to rank from

implicit feedback. As shown by Joachims et al. [19], the parameters

of the PBM can serve as propensity estimates, enabling the use of

IPS weighting for unbiased learning-to-rank.

The PBM captures that the rank of a result has a strong influence

on whether a result is examined (i.e. viewed and evaluated as a

prerequisite for any subsequent feedback like a click or a rating)

by a user, where higher-ranked results are typically more likely to

be examined than results further down the ranking. Suppose that

for a particular query q, result d is displayed at position k . Let C be

the random variable corresponding to a user clicking on d , and let

E be the random variable denoting whether the user examines d .
Then according to the Position-Based Model [9],

Pr(C = 1|q,d,k) = Pr(E = 1|k) rel(q,d), (1)

where rel(q,d) ∈ {0, 1} is the binary relevance of document d for

query q.
While Pr(E = 1|k) can be used as an estimate of the examination

propensity [19], it is a rather simplistic model since it assumes that

examination does not vary across queries. However, it is implausible

that navigational queries share the same propensity curve with

informational queries, and we will validate in our experiments that

such dependencies exist in real-world search engines. More broadly,

we argue that examination behavior not only varies across queries,

but that it varies across contexts x more generally. This context

x includes the query itself and features describing the query (e.g.,

query length), features describing the candidate set (e.g., size), and

features describing the user (e.g., age). To be able to model these

dependencies, we propose a new model – called the Contextual

PBM (CPBM) – where the examination propensity can depend on

the observed context x in addition to the position as follows.

Pr(C = 1|x ,d,k) = Pr(E = 1|k,x) rel(x ,d). (2)

Since the context x contains all the information about its corre-

sponding query q, we can drop the query q from our notation.

Through its dependence on context x , the CPBM can represent

different propensity curves Pr(E = 1|k,x) w.r.t. position k for each

query context x , instead of assuming that all queries share the same

examination curve Pr(E = 1|k) like in the PBM.

4 ESTIMATING CPBMMODELS
While the increased expressiveness of the CPBM is clearly desirable,

it raises several challenges when estimating the model from the

data. In particular, instead of just estimatingkmax scalar parameters

Pr(E = 1|k) like in the PBM, where kmax is the maximum length of

the presented rankings (say 10 or 20), the CPBM requires estimating

a context-dependent propensity model Pr(E = 1|k,x), which in the

following will be represented as a neural network. Furthermore,

estimating Pr(E = 1|k,x) is challenging since we typically do not

observe ground truth for rel(x ,d) such that it is difficult to attribute

the lack of a feedback signal to a lack of examination or a lack of

relevance. After reviewing the shortcomings of a naive generative

modeling approach in the next subsection, we will exploit the fact

that randomized interventions can be used to control for relevance.

In particular, we will show how reusing logged click data from

multiple ranking functions provides such intervention data for the

CPBM under reasonable assumptions, eliminating the need for

explicit interventions that affect the user experience.

4.1 Generative Modeling
The first thought one may have is to estimate a CPBM via a stan-

dard generative-modeling approach with both examination and

relevance as latent variables. In fact, Wang et al. [27] have proposed

such an approach for the simpler problem of estimating the param-

eters of the PBM. Let L = {(x j ,d j ,k j , c j )|j ∈ [N ]} be a sample

of N observations with one tuple for each context-document pair

(x j ,d j ), indicating with k j the position of d j in the ranking and

with c j ∈ {0, 1} whether it was clicked. Extending the approach

of Wang et al. [27] to the CPBM, the conditional log likelihood
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Figure 1: Illustration of Swap Interventions and of Intervention Harvesting.

objective (conditioned on the observed queries and rankings) is

log Pr(L) =
∑
j ∈L

[
c j log

(
pk j (x

j )r (x j ,d j )
)

+ (1 − c j ) log
(
1 − pk j (x

j )r (x j ,d j )
) ]
,

where pk (x) := Pr(E = 1|k,x) is a context-dependent propensity
model and r (x ,d) := rel(x ,d) is a document-dependent relevance

model. Both relevance and examination are latent, and even for the

simpler PBM model it was found that the propensity estimates can

be far off [3]. A key shortcoming of this approach is that it requires

learning the relevance rel(x ,d) of all individual documents without

any direct supervision, which is just as difficult as the learning-

to-rank problem itself. This means that the relevance model will

typically be misspecified and thus bias the propensity estimates.

4.2 Explicit Swap Interventions
To overcome the need for modeling the unobserved relevance of all

query-document pairs, we will employ an interventional approach

that controls for relevance at each position. To start, let us first

review how explicit interventions have been used for estimating

pk := Pr(E = 1|k) in the PBM [19, 26]. The PBM requires estimat-

ing a single vector p = [p1,p2, ...,pkmax ] with pk for each position

k ∈ [1,kmax ]. In this case, randomly swapping results at positions

k and k ′ before presenting the ranking [19] makes the expected

relevance of results at the two positions equal. An illustrative ex-

ample is given in Figure 1a for k = 1 and k ′ = 3. Through the

randomized swap, documents d1 and d3 have a 50% probability of

being presented either at position k = 1 or at position k ′ = 3. So,

over the distribution of queries that are subject to this randomized

swapping, the distribution of documents in position k = 1 is iden-

tical to the distribution of documents in k = 3, and thus is their

expected relevance. This randomized control for relevance resolves

the ambiguity in attributing the lack of clicks to either a lack of

relevance or a lack of observation.

More formally, denote withCkk,k ′ andC
k ′
k,k ′ the random variables

indicating clicks on positions k and k ′ respectively for the set of

training queries where the results at positions k and k ′ are swap-
randomized with probability q = 0.5. Since the results are swapped

uniformly, the expected relevance at positions k and k ′ is controlled
to be equal at these positions, and thus expected click-through rates

reveal the relative propensities via

pk
pk ′
=

E[Ckk,k ′]

E[Ck
′

k,k ′]
.

This means that the ratio of the observed click-through rates is a

consistent estimator of the relative propensities pk and pk ′ under
the PBM [19]. Note that knowing the relative propensities with

respect to a single “anchor" position (e.g.
pk
p1 ) is sufficient, since the

counterfactual ERM learning objective is invariant to multiplicative

scaling [19].

While this ratio estimator is a sensible approach for the PBM, it is

not directly applicable to the Contextual PBM even if we only need

relative propensity estimates. In particular, a simple ratio of the

observed click-through rates at different ranks will yield
Ex [pk (x )]
Ex [pk′ (x )]

,

where the expectation is over contexts. This is not the estimate we

seek for the CPBM, since we need estimates of each specific pk (x)
(up to multiplicative scaling) to de-bias clicked examples at posi-

tion k under context x . To get such context-dependent propensity

estimates, we will introduce a different estimator below. Further-

more, we will show how to avoid explicit swap interventions by

harvesting implicit interventions. As illustrated below, such im-

plicit interventions are typically available in large quantities and

do not come at the expense of user experience related to randomly

swapping results.

4.3 Intervention Harvesting for the CPBM
Instead of explicitly swapping results, Agarwal et al. [3] have re-

cently shown for the PBM how interventions similar to explicit

swaps can be harvested from data that is readily available in most

operational systems. We will extend this approach to the CPBM

and derive an intervention-harvesting estimator for the CPBM that

does not require explicit swap interventions, nor does it require

a document-specific relevance model that would be difficult to fit.

Instead, our estimator merely needs to model how the average
relevance over all queries and documents at a position – not the

context-document specific relevance – changes with context.

As input for our estimator, suppose we have data fromm historic

rankers F = { f1, ..., fm }. Each ranker f maps a query context x to

a ranking f (x) of the candidate set of documents. Let rk(d | f (x))
denote the rank of document d in the ranking. Let ni be the number



of queries that fi processed, and let L = {(x j ,d j ,k j , c j )|j ∈ [N ]}

be the aggregated click log over all the rankers, with one tuple for

each context-document pair. We require that the distribution of

contexts is stationary, or specifically that there is no dependency

between the context and the choice of ranking function fi [3, 20],

∀fi : Pr(X| fi ) = Pr(X) ⇒ ∀x ∈ X : Pr(fi |x) = Pr(fi ). (3)

This condition is fulfilled in at least two situations – namely in A/B

tests and under stationary Pr(X). In data from A/B tests, where

users are randomly assigned to one of the rankers, the condition is

fulfilled by design. An example is shown in Figure 1b. For a given

context x , the ranking functions f1, f2 and f3 are each chosen com-

pletely randomized with equal probability
1

3
. By choosing one of the

three rankers, we implicitly conduct a number of interventions. For

example, document d1 is randomized to be displayed in positions

1, 2, or 3 with equal probability, and document d2 is displayed in

position 1 with probability
2

3
and in position 2 with probability

1

3
.

Figure 1c shows that a similar randomization holds when the pro-

duction ranker gets updated from f1 to f2 under stationary Pr(X).

Stationarity implies that the probability of a context x is equal be-

fore and after the update, and thus d4 has twice the probability of

being shown in position 4 than in position 5 in this toy example

with 3-time steps.

To exploit this readily available intervention data for estimating

the CPBM, let’s first focus on a fixed pair of positions k,k ′. The key
idea of intervention harvesting for the CPBM is to control for the

varying average relevance of results displayed in positions k,k ′ for
context x by restricting to the set of queries that, for an appropriate

choice of ranker from F = { f1, ..., fm }, could have been placed

either at k or k ′. To this effect, we define interventional sets

Sk,k ′ := {(x ,d) : ∃f ,f ′ rk(d | f(x))=k ∧ rk(d | f ′(x))=k ′} (4)

as the sets of (x ,d) pairs that receive “treatments" k or k ′ under
different rankers. Specifically, a context-document pair (x ,d) is in-
cluded in Sk,k ′ , if for the context x some ranker f ∈ F puts the

document d at position k and another ranker f ′ ∈ F puts it at posi-

tion k ′. This is akin to a virtual swap intervention at positions k and

k ′, albeit only with a single document. Based on these definitions,

the toy example in Figure 1b produces interventional sets such that

(x ,d1) ∈ S1,2, S1,3, S2,3, (x ,d2) ∈ S1,2, (x ,d4) ∈ S4,5, etc. Note that
the set includes all possible queries that may be sampled, not only

those that are actually sampled in one or more rankers’ logs. Fur-

thermore, note that the feedback signals of (x ,d) from some rankers

might remain counterfactual and unobserved. Illustrating this using

the toy example in Figure 1b, each ranking of F = { f1, f2, f3} was
a potential choice, but only one of those rankings was presented to

the user – say the ranking of f1. In this way, we only observe the

feedback for d1 at position 1, but not at the other positions.

To account for the fact that not all interventions within an in-

terventional set Sk,k ′ have the same probability, we define the

following weighting function that is proportional to the treatment-

assignment probability. It can either be computed from the known

assignment probabilities in an A/B test, or for consecutive policy

deployments via

qk (x ,d) :=

∑m
i=1 ni1[rk(d | fi (x)) = k]∑m

i=1 ni
. (5)

For the example in Figure 1b, we have q1(x ,d1) = q2(x ,d1) =
q3(x ,d1) =

1

3
, q4(x ,d4) =

1

3
, q5(x ,d4) =

2

3
, etc.

4.4 AllPairs Estimator for the CPBM
Now that we have extracted intervention data and its assignment

mechanism from existing logs, we can tackle the question of defin-

ing an estimator for the CPBM using this data. The key challenge

compared to analogous estimators for the PBM [3] lies in modeling

the dependence on context. We start by constructing the follow-

ing feedback labels for each (x j ,d j ,k j , c j ) ∈ L by correcting the

non-uniform assignment mechanism to the uniform intervention

distribution in each interventional set [3].

ĉ
j
k,k ′(k) := 1[(x j ,d j )∈Sk,k′ ]1[k j=k ]

c j

qk (x
j ,d j )

¬̂c
j
k,k ′(k) := 1[(x j ,d j )∈Sk,k′ ]1[k j=k ]

1 − c j

qk (x
j ,d j )

This can be thought of as an IPS weighted class label. For the PBM

without a dependence on context x , in expectation (over the choice

of ranker and query) ĉ
j
k,k ′(k) is proportional to the product of exam-

ination propensity pk and average relevance rk,k ′ :=Pr(rel(x ,d) =
1|(x ,d) ∈ Sk,k ′) [3], just like for the explicit swap interventions

mentioned above. However, when there is a dependency on context

x for both the examination probabilities pk (x) and the average rel-

evance rk,k ′(x) := Pr(rel(x ,d) = 1|(x ,d) ∈ Sk,k ′ ,x), unbiasedness
w.r.t. the query distribution no longer holds and there is generally

no small number of individual parameters pk and rk,k ′ that could
be estimated exhaustively. To overcome this problem, we exploit

that unbiasedness still holds for each individual context, and we

introduce a context-dependent examination model h(k,x) for pk (x)
and a context-dependent average relevance model д(k,k ′,x) for
rk,k ′(x) to compactly capture the variation across contexts. In the

experiments in this paper, we model both h(k,x) and д(k,k ′,x) as
neural networks.

With these definitions in place, we can now formulate an ex-

tremum estimator similar to a maximum-likelihood criterion. We

call this the AllPairs estimator for the CPBM. It combines the

flexibility of the observational generative modeling approach with

the robustness of the interventional methods, specifically the in-

tervention harvesting approach previously used for estimating the

PBM [3].

ˆhCPBM := argmax

h,д

∑
j ∈L

∑
k,k ′

[
ĉ
j
k,k ′(k) log

(
h(k,x j )д(k,k ′,x j )

)
(6)

+¬̂c
j
k,k ′(k) log

(
1−h(k,x j )д(k,k ′,x j )

)]
Here, h(k,x) and д(k,k ′,x) are constrained to (0, 1) by using a sig-

moid output layer on both networks. While the AllPairs estimator

has syntactic similarity with the generative maximum-likelihood

objective from [27], both are fundamentally different. Notably, All-

Pairs uses interventional data to control for the unobserved docu-

ment relevance, while the generative model is purely observational.

This allows the average relevance model д(k,k ′,x) in AllPairs to

be substantially simpler than the individual relevance model д(q,d)
in generative modeling. In particular, д(k,k ′,x) in AllPairs does

not model the relevance of an individual document to a query, but



merely how the average relevance of documents in positions k
and k ′ changes with context. As such, д(k,k ′,x) does not require
document-level relevance features, but merely takes the context

x and the positions as input. In the experiments, we find that the

average relevance at a specific position k does not change much

with context x , and that even replacing the neural relevance model

д(k,k ′,x) with kmax choose 2 context-independent parameters

rk,k ′ performs quite well.

We now further justify the use of the objective in Equation (6) by

showing that it is equivalent to a weighted version of Cross-Entropy

Maximization where the weights adjust for the varying amounts of

interventional data available across position pairs k,k ′. This relates
the AllPairs objective to optimizing the KL-divergence between

model and data, and it implies two practical advantages. First, for

this type of objective, it is well known that training neural networks

via backpropagation is effective. Second, this objective provides

an attractive method for information aggregation, mitigating the

noisiness and sparsity of click data.

Proposition 1. Under the condition in (3) and i.i.d. contexts x ∼

Pr(X), the objective in Equation (6) is equivalent to the following
weighted form of Cross-Entropy,∑

x ∈X

∑
k,k ′

N̂k,k ′(x)

[
ŷk,k ′(k,x) log

(
yk,k ′(k,x)

)
+¬̂yk,k ′(k,x) log

(
1−yk,k ′(k,x)

) ]
of the random variables yk,k ′(k,x) and their empirical counterparts
ŷk,k ′(k,x), ¬̂yk,k ′(k,x) weighted with N̂k,k ′(x), where

yk,k ′(k,x) := h(k,x)д(k,k
′,x) = pk (x)rk,k ′(x)

N̂k,k ′(x) :=
∑
j ∈L

1[x j=x ]1[(x j ,d j )∈Sk,k′ ]

ŷk,k ′(k,x) :=

∑
j ∈L1[x j=x ]ĉ

j
k,k ′(k)

N̂k,k ′(x)

¬̂yk,k ′(k,x) :=

∑
j ∈L1[x j=x ]¬̂c

j
k,k ′(k)

N̂k,k ′(x)
,

and

E[ŷk,k ′(k,x)] = yk,k ′(k,x)

E[¬̂yk,k ′(k,x)] = 1 − yk,k ′(k,x).

Proof. First, we rewrite the objective as follows:∑
j ∈L

∑
k,k ′

[
ĉ
j
k,k ′(k) log

(
yk,k ′(k,x

j )
)
+ ¬̂c

j
k,k ′(k) log

(
1−yk,k ′(k,x

j )
)]

=
∑
x ∈X

∑
j ∈L

∑
k,k ′

1[x j=x ]

[
ĉ
j
k,k ′(k) log

(
yk,k ′(k,x

j )
)

+ ¬̂c
j
k,k ′(k) log

(
1−yk,k ′(k,x

j )
) ]

=
∑
x ∈X

∑
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1[x j=x ]ĉ
j
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∑
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j
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∑
x ∈X
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N̂k,k ′(x)

[
ŷk,k ′(k,x) log

(
yk,k ′(k,x

j )
)

+ ¬̂yk,k ′(k,x) log
(
1−yk,k ′(k,x

j )
) ]

Next, we are going to prove that E[ŷk,k ′(k,x)] = yk,k ′(k,x) and
E[¬̂yk,k ′(k,x)] = 1−yk,k ′(k,x), which is required byCross-Entropy.

E[ŷk,k ′(k,x)N̂k,k ′(x)]

=E[
∑
j ∈L

1[x j=x ]1[(x j ,d j )∈Sk,k′ ]1[k j=k ]
c j

qk (x
j ,d j )

]

=

m∑
i=1

ni∑
j=1

Pr(x)
∑

d ∈Ω(x )

1[(x,d )∈Sk,k′ ]1[rk(d |fi (x ))=k ]
E[c(d)]

qk (x ,d)

= Pr(x)
m∑
i=1

ni∑
j=1

∑
d ∈Ω(x )

1[(x,d )∈Sk,k′ ]1[rk(d |fi (x ))=k ]
pk (x) rel(x ,d)

qk (x ,d)

=pk (x) Pr(x)
∑

d ∈Ω(x )

1[(x,d )∈Sk,k′ ] rel(x ,d)

∑m
i=1

∑ni
j=11[rk(d |fi (x ))=k ]

qk (x ,d)

=pk (x) Pr(x)
∑

d ∈Ω(x )

1[(x,d )∈Sk,k′ ] rel(x ,d)

∑m
i=1ni1[rk(d |fi (x ))=k ]

qk (x ,d)

=pk (x) Pr(x)
∑

d ∈Ω(x )

1[(x,d )∈Sk,k′ ] rel(x ,d)
m∑
i=1

ni

=pk (x)E[
∑
j ∈L

1[x j=x ]1[(x j ,d j )∈Sk,k′ ] rel(x
j ,d j )]

=pk (x)rk,k ′(x)Nk,k ′(x)

=yk,k ′(k,x)Nk,k ′(x)

where Nk,k ′(x) = E[
∑
j ∈L 1[x j=x ]1[(x j ,d j )∈Sk,k′ ]] = E[N̂k,k ′(x)].

Then we have E[ŷk,k ′(k,x)] =
E[ŷk,k′ (k,x )N̂k,k′ (x )]

E[N̂k,k′ (x )]
= yk,k ′(k,x).

Similarly, E[¬̂yk,k ′(k,x)] = 1 − yk,k ′(k,x). Note that we make

the reasonable assumption that user click behavior is indepen-

dent of the context sampling and ranker choice process, and thus

ŷk,k ′(k,x) and N̂k,k ′(x) are independent random variables, so that

E[ŷk,k ′(k,x)N̂k,k ′(x)] = E[ŷk,k ′(k,x)]E[N̂k,k ′(x)].
□

4.5 Neural Network Model for the CPBM
We employ neural networks for modeling both the context-depen-

dent propensities h(k,x) as well as the context-dependent average
relevance д(k,k ′,x). The respective multi-layer perceptron (MLP)

architectures are shown in Figure 2. Both networks take as input

the context features x ∈ Rt , and output the examination propensity

vector p(x) ∈ Rkmax
and the average relevance matrix r (x) ∈
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Figure 2: The architecture of the multilayer perceptrons.

Rkmax×kmax
respectively. The hidden layer in the propensity MLP

is a traditional sigmoid-activated dense layer, which learns a weight

matrix Wp ∈ Rt×kmax
and bias vector bp ∈ Rkmax

to produce a

propensity vector p(x) = σ (Wpx + bp). The average-relevance

model is less standard, and its first hidden layer in the relevance

MLP learns a 3d weight arrayWr ∈ R
t×kmax×kmax

and bias matrix

br ∈ Rkmax×kmax
to produce an initial relevance matrix r̃ (x) =

σ (Wrx + br). To ensure the symmetry of the relevance matrix,

the second hidden layer of the relevance MLP computes r (x) =
(̃r (x)T + r̃ (x))/2.

We conjecture that improvements to these models could further

improve results. First, other neural networks may be good alter-

natives. For instance, in terms of the sequential examination process,

we could iteratively output the propensitiesp1(x),p2(x), ...,pmax (x)
using a recurrent neural network (RNN), where the input sequence

consists of repeated context features x . Second, embedding the posi-

tion k as a feature would give rise to different network architectures.

For example, the position could be encoded in a one-hot feature

vector k ∈ Rkmax
, which could then be concatenated to the context

features x to predict the examination propensity pk (x).

5 EMPIRICAL EVALUATION
We empirically evaluate the effectiveness and robustness of our

method through real-world experiments on the ArXiv Full-Text

Search
1
and through semi-synthetic experiments on the Yahoo

Learning-To-Rank Challenge corpus (set 1) [7]. The ArXiv experi-

ments verify real-world relevance and applicability, while the syn-

thetic experiments enable the evaluation of the method over a wide

range of scenarios.

1
http://search.arxiv.org:8081/

Table 1: Size of data sets from ArXiv.

Type Swap intervention A/B Test Harvesting

Clicks Queries Clicks Queries

Complex 32,108 24,460 41,638 27,072

Simple 15,296 36,659 22,915 50,443

5.1 Real-World Evaluation: ArXiv Search
To verify that contextual effects on the propensity exist in real-

world settings and to show that these can be estimated using inter-

vention harvesting and the AllPairs estimator for the CPBM, we

conducted a series of experiments on the ArXiv Full-Text Search. To

get reliable propensity estimates that can serve as a gold-standard,

we fielded explicit swap intervention in addition to an A/B test that

we use for intervention harvesting. Specifically, we assigned equal

probability of accepting an incoming query to these two mecha-

nisms. For intervention harvesting, we used three ranking functions

{ f1, f2, f3} and chose uniformly at random between them for half of

the incoming queries. For the other half, we also chose one of these

ranking functions at random but inserted an explicit swap interven-

tion between rank 1 and rank k ∈ {1, 2, ..., 21}. These explicit swap

interventions were then used to get a gold-standard estimate of the

propensities via the methods in [19]. To avoid any confounding

due to changes in the query distribution, data for all conditions

was collected in parallel between May 14, 2018 and December 13,

2018. In total, 138,600 queries and 112,000 clicks were collected,

with about 61,100 queries for the explicit intervention and the rest

for the intervention harvesting. For the following experiments, the

data was randomly divided into a training set with 80 % of the data,

a validation set with 10 %, and a test set with the remaining 10 %.

In all experiments, the hyper-parameters of the neural networks in

the CPBM were selected via cross-validation.

Do real-world propensity curves actually depend on con-
text? We first verify that the propensity curves in ArXiv do indeed

depend on context. To this effect, we introduce a single binary

context feature that characterizes each query as either complex

(denoted by 1) or simple (denoted by 0).

Complex queries are those that contain some logical operators

from the Boolean query language supported by the search engine,

such as “OR" and “AND”, while simple queries are the remainder.

The numbers of queries and clicks are given in Table 1. We then

use the gold-standard propensity estimator from [19] to learn two

PBM models from the swap intervention data, one for complex and

one for simple queries.

Figure 3 shows that the two propensity curves are indeed sub-

stantially different. The shaded region for each curve depicts a 95

% confidence interval run on 1000 bootstrap samples. One possible

interpretation is that complex queries are often used as more of a

“lookup" rather than a search, and thus the first few results typically

either match or the user reformulates. On the other hand, simple

queries are often part of an exploratory search, such that users go

further down the ranking.

Can AllPairs learn context-dependent propensity curves?
Now that we know that contextual dependencies exist in real-world

propensity curves, we can verify whether the AllPairs estimator



Figure 3: Propensity curves for simple and complex queries
on ArXiv estimated as two PBM via swap interventions.

Figure 4: Propensity curves for simple and complex queries
on ArXiv estimated as a CPBM via intervention harvesting.

with the neural CPBM model can accurately estimate these curves.

Figure 4 show the propensity curves estimated by the AllPairs

estimator on the intervention harvesting data fromTable 1 using the

neural model with only the single input feature. The curves closely

match the gold standard in Figure 3, indicating that the CPBM can

accurately learn these curves with a single neural network model.

In addition, AllPairs achieves much improved error bars. This is

to be expected, given that AllPairsmakes more efficient use of the

data than the ratio-estimates from [19].

Can AllPairs learn CPBMmodels with many context fea-
tures? While it is infeasible to introduce additional features and

learn separate PBM for each combination, adding context features

to our neural CPBM model is straightforward. We will now explore

in how far different groups of context features improve the predic-

tive accuracy of the CPBM. Since we no longer have a gold-standard

propensity curve to compare against, we instead use the AllPairs

objective evaluated on a test set as our measure of predictive per-

formance – similar to evaluating log-likelihood on a test set. We

explore the following groups of context features:

(1) category: whether the query is specified as a category and its

corresponding specified category ((binary {0, 1}, 10 features

in total)

(2) query_len: whether the length of the query is greater than

X ∈ {1, 2, 5, 10, 15, 20, 25, 30, 35, 40} (binary {0, 1}, 10 fea-

tures in total)

(3) ord_in_session: whether the order of the query in its session

is greater than X ∈ {1, 2, 5, 10, 15} ((binary {0, 1}, 5 features

in total)

(4) #results: whether the number of results for each query is

greater than X ∈ {1, 2, 5, 10, 15, 20, 50, 100, 150, 200} (binary

{0, 1}, 10 features in total)

(5) result_dist: the category distribution of each query (lies in

[0, 1]35 with sum to 1, 35 features in total)

Other reasonable features can also be taken into consideration, like

query performance predictors [5, 11].

Table 2 shows the test-set performance. The baseline is a PBM

model trained according to [3], which is essentially a CPBM model

without features and a relevance model that explicitly represents

each pairwise relevance. The table shows that the CPBM improves

on the PBM in terms of predictiveness across all feature groups.

The "category" and "query_len" features appear to have the largest

influence on the propensity curve. However, the best predictive

accuracy is achieved when all features are included in the CPBM.

This verifies that the CPBM can make use of complex features to

improve the fit of the propensity model.

5.2 Robustness Analysis: Yahoo LTR Challenge
We now turn to experiments on semi-synthetic data. Using a semi-

synthetic setup combines the external validity of using a real-world

dataset with the ability to fully explore a range of different settings

for evaluating robustness.

Our semi-synthetic click data is based on the Yahoo LTR Chal-

lenge dataset. It contains manual relevance assessments as ground

truth and we follow the given train/validation/test splits, but filter

out queries that have no relevant documents. To generate click data

for intervention harvesting, we learned two ranking functions by

running SVM-Rank [16] on two small randomly sampled subsets

of the training queries. To control the ranker similarity, 22 queries

were the same for both rankers and each ranker independently sam-

pled 92 additional queries. The remaining (roughly 11,400) queries

of the training set were used to generate synthetic click data based

on these two ranking functions.

To generate the click data via a CPBM, we need a model for the

context features and an examination model. For context features,

each query was mapped to a 10-dimensional feature vector x , con-
catenated by two parts: relevant part [x1,x2, ...,xi ] and random part

[xi+1,xi+2, ...,x10], and we use parameter ζ = i
10

to control the

dependency between relevance and context. For the relevant part,

the important features which contribute to the relevance modeling

were selected in the following way: we first used an SVM-Rank to

get a one-sweep click log on the training split. Then we trained

kmax logistic models rk (x),k ∈ [1,kmax ], which denotes the av-

erage relevance at position k . Let the coefficient of each feature

x j among the given query-document feature vector in each model

rm be ujm , we assigned each feature a score sj = maxj
��ujm ��

. We

randomly selected i features from a candidate set which contains

features x j ranked in top-30 sj list. At last, the relevant part was the
average of the vector representations of all relevant results on those

selected i features. For the random part, we drew [xi+1,xi+2, ...,x10]
from the normal distribution N(0, σ 2). To keep the performance

of the PBM stable with increasing ζ , σ was tuned to be 0.35.



Table 2: Objective on the test set for the PBM and the CPBM when including each feature group and for all features.

Model PBM CPBM

category query_len ord_in_session #results result_dist All

Objective -13926.18 -12622.96 -12674.8 -13205.21 -13241.28 -12901.94 -12306.52

Increment (vs. PBM) - 1303.22 1251.38 720.97 684.90 1024.24 1619.66

Table 3: Relative decrease in the relative error of CPBM vs.
PBM (#Training queries = 113590, η = 0.5).

PBM CPBM Improvement

RelError 0.478700 0.169443 64.60%

For the examinationmodel we chose Pr(E = 1|k,x) = 1

kmax(w ·x+1,0) .

The parameter vector w was drawn from a uniform distribution

over the half-open interval [−η,η), and we normalized the weight to∑
10

i=1wi = 0 by subtracting the average weight from each position.

The parameter η controls how much examination varies with

context. In the extreme case ofη = 0, there is no context dependency,

and context dependency grows as η increases. We also incorporated

click noise into the simulation by setting the probability of clicking

on an irrelevant result to ϵ− = 0.1. We chose the maximum number

of positions to be kmax = 10.

To evaluate the accuracy of the propensity estimates on a test

sample D = {x j |j ∈ [M]}, we adopted the following relative error

measure where p̂k (x) =
h(k,x j )
h(1,x j ) are the estimated relative propensi-

ties and pk (x) =
Pr(E=1 |k,x j )
Pr(E=1 |1,x j ) are the true relative propensities are

known by construction.

RelError (h) =
1

M

∑
j ∈D

1

kmax

kmax∑
k=1

�����1 − p̂k (x
j )

pk (x
j )

�����
This measure evaluates the accuracy of the estimates in terms of

their use as inverse relative propensity weights, which will be their

primary function. The relative error reported below is evaluated on

the test set, and error bars indicate the standard deviation estimated

over 6 independent runs (except in Figure 8 as described below).

In our implementation of the AllPairs estimator, the propensity

model and the relevance model were both implemented by a multi-

layer perceptron (described in Section 4.5), whose parameters were

selected via cross-validation.

How much more accurate is the CPBM compared to the
PBM?. Table 3 shows the RelError of the CPBM and the PBM on

test data, where both are trained using theAllPairs estimator using

a large amount of click data for training (113, 590 training queries).

It can be thought of as the asymptotic performance of the respective

model. The table shows that the CPBM improves substantially over

the PBM, more than halving the error. This verifies that the All-

Pairs estimator can effectively learn context-dependent propensity

curves from harvested interventions. Note that the CPBM had no

knowledge of the true functional form of the examination model

that was used to generate the clicks, but had to approximate it using

the neural network model.
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Figure 5: Difference in AvgRank compared to the true
propensity model (η = 10, ζ = 1).

Does the CPBM improve learning-to-rank performance?
In practice, the propensities coming from the CPBM will typically

be used for learning new ranking functions from the de-biased click

data. We now evaluate whether the CPBMmodel improves learning

performance compared to using the propensities from the PBM.

We trained a Clipped Propensity SVM-Rank [19] for each of

the following three propensity models: PBM estimated via All-

Pairs, CPBM estimated via AllPairs, and – as gold standard – the

true propensities used during synthetic data generation. All hyper-

parameters were picked via cross-validation. For rank r > 21, we

impute the propensity pr (x) = p21(x). Following [19], we measure

test-set ranking performance via the average sum of the ranks of

the relevant results across the queries in the test set D,

AvдRank(f ) =
1

M

∑
j ∈D

∑
d ∈Ω(x j )

rk(d | f (x j )) rel(x j ,d).

Figure 5 shows ranking performance relative to the performance

of the Propensity SVM-Rank that has access to the true propensities.

For sufficiently large data set sizes, the performance when using the

CPBMpropensities appears closer to the gold-standard performance

than when using the PBM. This is to be expected, since the training

objective the Propensity SVM-Rank is known to be biased for the

misspecified propensities of the PBM, so that more data no longer

translates into better learning performance.

Howmuch data is needed to learn a CPBM? So far, we have

used large amounts of training data to study the asymptotic per-

formance of AllPairs for the CPBM. But how much data is really

needed? Figure 6 compares the error of the three models across a

wide range of training data sizes. The figure shows that a much

smaller number of training examples suffices to get good accuracy.

In particular, the relative error decreases quickly and asymptotes

at about 5,700 training queries. Furthermore, Figure 6 shows that
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model with increasing strength of relevance dependence ζ
(#Training queries = 57365, η = 1).

the CPBM dominates the PBM across the whole range of data-set

sizes, even when the amount of click data is quite small.

How does the strength of context dependence affect the
CPBM? We explore the behavior of the estimators when we vary

the strength of context dependence via η. Results are shown in

Figure 7, where the CPBM outperforms or at least matches the PBM

across the whole range. As expected, the error of the PBM increases

as the strength of context dependence increases. In contrast, the

CPBM can capture the context dependence effectively.

How important is it to incorporate a relevance model in
the estimator? Figure 8 shows the error reduction between the
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Figure 9: Relative error of the CPBM at different positions
in the ranking (#Training queries = 114730, η = 0.5, ζ = 1).

estimators under the CPBM with and without a context-dependent

relevance model. For the CPBMwith a context-dependent relevance

model, we use the neural-network relevance model д(k,k ′,x), and
for the other one we simply use context-independent parameters

rk,k ′ for each pair of ranks. To ensure statistical stability, we reran

the experiment 20 times. The error reduction provided by context-

dependent relevance model increases when the context has increas-

ing influence on the relevance profile. With maximum decrease in

error of only 0.02, the context-dependent relevance model provides

only a mild improvement to the accuracy of the estimates. This

highlights the desirable fact that the relevance model д(k,k ′,x) can
be far less crucial than the query-document relevance model д(q,d)
in generative models.

How accurate is the estimate at different positions in the
ranking? Figure 9 shows the relative error of the CPBM at different

positions in the ranking. As expected, the relative error increases

with position, because lower-ranked documents have a smaller

chance of receiving clicks and thus have less training data from

intervention harvesting. Furthermore, the examination propensities

at lower ranks are generally smaller, such that absolute deviations in

the propensity estimates lead to larger contributions to our relative

error metric.

6 CONCLUSIONS
We introduced the Contextual Position-Based Model (CPBM) to bet-

ter capture the examination bias in interaction feedback from rank-

ings. The CPBM captures how examination changes with context,

and we developed an estimator for learning a CPBM from implicit

feedback data. The key idea is to harvest interventions from the logs

of multiple historic rankers, which provides experimental control to

eliminate confounding of relevance on examination. Plugging a neu-

ral network model into the estimator, we show how the CPBM and

the estimator can effectively learn context-dependent examination

models in simulation experiments and real-world experiments.
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