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Abstract

This paper proposes a new method for evaluating the quality of re-
trieval functions. Unlike traditional methods that require relevance judg-
ments by experts or explicit user feedback, it is based entirely on click-
through data. This is a key advantage, since clickthrough data can be
collected at very low cost and without overhead for the user. Taking
an approach from experiment design, the paper proposes an experiment
setup that generates unbiased feedback about the relative quality of two
search results without explicit user feedback. A theoretical analysis shows
that the method gives the same results as evaluation with traditional rel-
evance judgments under mild assumptions. An empirical analysis verifies
that the assumptions are indeed justified and that the new method leads
to conclusive results in a WWW retrieval study.

1 Introduction

User feedback can provide powerful information for analyzing and optimizing
the performance of information retrieval systems. Unfortunately, experience
shows that users are only rarely willing to give explicit feedback (e. g. [10]). To
overcome this problem, this paper explores an approach to extracting informa-
tion from implicit feedback. The user is not required to answer questions, but
the system observes the user’s behavior and infers implicit preference informa-
tion automatically.

The particular retrieval setting studied in this paper is web search engines.
In this setting, it seems out of question to ask users for relevance judgments
about the documents returned. However, it is easy to observe the links the user
clicked on. With search engines that receive millions of queries per day, the
available quantity of such clickthrough data is virtually unlimited. This paper
shows how it is possible to tap this information source to compare different
search engines according to their effectiveness. The approach is based on the
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idea of designing a series of experiments (i.e. blind tests) for which clickthrough
data provides an unbiased assessment under plausible assumptions.

2 Previous Work

Most evaluation in information retrieval is based on precision and recall using
manual relevance judgments by experts [1]. However, especially for large and
dynamic document collections, it becomes intractable to get accurate recall es-
timates, since they require relevance judgments for the full document collection.
To some extend, focused sampling like in the pooling method [11] as used in
TREC [21] can reduce assessment cost. The idea is to focus manual assessment
on the top documents from several retrieval systems, since those are likely to
contain most relevant documents. While some attempts have been made to
evaluate retrieval functions without any human judgments using only statistics
about the document collection itself [20][8][14], such evaluation schemes can
only give approximate solutions and may fail to capture the users’ preferences.

Retrieval systems for the WWW are typically not evaluated using recall.
Instead, only their precision at N is measured [12][7]. This does not only de-
crease the amount of manual relevance assessment, but also – like the method
presented in this paper – focuses the evaluation on those documents actually
observed by the user [19]. However, the need for manual relevance judgments
by experts still limits the scale and the frequency of evaluations.

The usefulness measure of Frei and Schäuble [5] uses a different form of
human relevance assessment. With respect to being a relative performance
criterion, it is similar to the method proposed in this paper. The usefulness
measure is designed to compare two retrieval strategies without absolute rel-
evance judgments. Referring to empirical studies [17][13], Frei and Schäuble
argue that humans are more consistent at giving relative relevance statements.
Furthermore, they recognize that relevance assessments are user and context
dependent, so that relevance judgments by experts are not necessarily a good
standard to compare against. Therefore, their method relies on relative pref-
erence statements from users. Given two sets of retrieved documents for the
same query, the user is asked to judge the relative usefulness for all/some pairs
of documents. These user preferences are then compared against the orderings
imposed by the two retrieval functions and the respective number of viola-
tion is used as a score. While this technique eliminates the need for relevance
judgments on the whole document collection, it still relies on manual relevance
feedback from the user.

Some attempts have been made towards using implicit feedback by observing
clicking behavior. For example, the search engine DirectHit uses clickthrough
as a measure of popularity. Other search engines appear to record clickthrough,
but do not state what use they make of it. Published results on using click-
through data exist for experimental retrieval systems [3] and browsing assistants
[15]. However, the semantics of such data is unclear as argued in the following.
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f used for evaluation
↓ f used for presentation bxx tfc hand-tuned
bxx 6.26± 1.14 46.94±9.80 28.87± 7.39
tfc 54.02±10.63 6.18±1.33 13.76± 3.33
hand-tuned 48.52± 6.32 24.61±4.65 6.04± 0.92

Table 1: Average clickrank for three retrieval functions (“bxx”, “tfc” [16] ,
and a “hand-tuned” strategy that uses different weights according to HTML
tags) implemented in LASER. Rows correspond to the retrieval method used
by LASER at query time; columns hold values from subsequent evaluation with
other methods. Figures reported are means and two standard errors. This table
is taken from [2] .

3 Presentation Bias in Clickthrough Data

Which search engine provides better results: Google or MSNSearch? Evaluating
such hypotheses is a problem of statistical inference. Unfortunately, regular
clickthrough data is not suited to answer this question in a principled way.
Consider the following setup:

Experiment Setup 1 (Regular Clickthrough Data)
The user types a query into a unified interface and the query is sent to both

search engines A and B. One of the returned rankings is selected at random
and it is presented to the user. The ranks of the links the user clicked on are
recorded.

An example of an observation from this experiment is the following: the
user types in the query “support vector machine”, receives the ranking from
search enging B, and then clicks on the links ranked 1, 5, and 6. Data collected
by Boyan et al. shows that this setup leads to a strong “presentation bias” [3],
making the results difficult to interpret. Consider the average rank of the clicks
as a performance measure (e.g. 4 in the example). What can we conclude from
this type of clickthrough data?

Table 1 shows the average clickrank for three retrieval strategies averaged
over ≈ 1400 queries. Rows correspond to the retrieval method presented to
the user, while columns show the average clickrank from subsequent evaluation
with all retrieval functions. Looking at the diagonal of the table, the aver-
age clickrank is almost equal for all methods. However, according to subjec-
tive judgments, the three retrieval functions are substantially different in their
ranking quality. The lack of difference in the observed average clickrank can
be explained as follows. Since users typically scan only the first l (e.g. l ≈ 10
[19]) links of the ranking, clicking on a link cannot be interpreted as a relevance
judgment on an absolute scale. Maybe a document ranked much lower in the
list was much more relevant, but the user never saw it. It appears that users
click on the relatively most promising links in the top l, independent of their
absolute relevance. This hypothesis is supported by the off-diagonal entries of
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Table 1. However, it is difficult to derive a formal interpretation of this type of
data.

Other statistics, like the number of links the user clicked on, are difficult to
interpret as well. It is not clear if more clicks indicate a better ranking (i.e. the
user found more relevant documents) or a worse ranking (i.e. the user had to
look at more documents to fulfill the information need). These problems lead
to the conclusion that Experiment Setup 1 leads to clickthrough data that is
difficult to analyze in a principled way.

4 Unbiased Clickthrough Data for Comparing
Search Engines

While the previous experimental setup leads to biased data, we are free to
design other forms of presentation that do not exhibit this property. In this
light, designing the user interface becomes a question of experiment design.
What are the criteria a user interface should fulfill so that clickthrough data is
useful?

Blind Test: The interface should hide the random variables underlying the
hypothesis test to avoid biasing the user’s response. Like patients in
medical trials, the user should not know, which one is the “drug” or the
“placebo”.

Click ⇒ Preference: The interface should be designed so that a click during
a natural interaction with the system demonstrates a particular judgment
of the user.

Low Usability Impact: The interface should not substantially lower the pro-
ductivity of the user. The system should still be useful, so that users are
not turned away.

While Experiment Setup 1 is a blind test, it is not clear how clickthrough is
connected to performance. Furthermore, this experiment can have considerable
impact on the productivity of the user, since every second query is answered by
an inferior retrieval strategy.

4.1 An Experiment Setup for Eliciting Unbiased Data

The following is a more suitable setup for deciding from clickthrough data
whether one retrieval strategy is better than another. Under mild assumptions,
it generates unbiased data for a hypothesis test from paired observations.

Experiment Setup 2 (Unbiased Clickthrough Data)
The user types a query into a unified interface. The query is sent to both search
engines A and B. The returned rankings are mixed so that at any point the top
l links of the combined ranking contain the top ka and kb links from rankings
A and B, |ka − kb| ≤ 1. The combined ranking is presented to the user and the
ranks of the links the user clicked on are recorded.
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Google Results:

1. Kernel Machines
http : //svm.first.gmd.de/

2. SVM-Light Support Vector Machine
http : //ais.gmd.de/.../svm light/

3. Support Vector Machine ... References
http : //svm.....com/SV Mrefs.html

4. Lucent Technologies: SVM demo applet
http : //svm.....com/SV T/SV Msvt.html

5. Royal Holloway Support Vector Machine
http : //svm.dcs.rhbnc.ac.uk/

6. Support Vector Machine - The Software
http://www.support−vector.net/software.html

7. Support Vector Machine - Tutorial
http ://www.support−vector.net/tutorial.html

8. Support Vector Machine
http : //jbolivar.freeservers.com/

MSNSearch Results:

1. Kernel Machines
http : //svm.first.gmd.de/

2. Support Vector Machine
http : //jbolivar.freeservers.com/

3. An Introduction to Support Vector Machines
http : //www.support − vector.net/

4. Archives of SUPPORT-VECTOR- ...
http : //www.jiscmail.ac.uk/lists/...

5. SVM-Light Support Vector Machine
http : //ais.gmd.de/.../svm light/

6. Support Vector Machine - The Software
http://www.support−vector.net/software.html

7. Lagrangian Support Vector Machine Home Page
http : //www.cs.wisc.edu/dmi/lsvm

8. A Support ... - Bennett, Blue (ResearchIndex)
http : //citeseer.../bennett97support.html

Combined Results:

1. Kernel Machines
http : //svm.first.gmd.de/

2. Support Vector Machine
http : //jbolivar.freeservers.com/

3. SVM-Light Support Vector Machine
http : //ais.gmd.de/ ∼ thorsten/svm light/

4. An Introduction to Support Vector Machines
http : //www.support − vector.net/

5. Support Vector Machine and Kernel Methods References
http : //svm.research.bell − labs.com/SV Mrefs.html

6. Archives of SUPPORT-VECTOR-MACHINES@JISCMAIL.AC.UK
http : //www.jiscmail.ac.uk/lists/SUP P ORT−V ECT OR−MACHINES.html

7. Lucent Technologies: SVM demo applet
http : //svm.research.bell − labs.com/SV T/SV Msvt.html

8. Royal Holloway Support Vector Machine
http : //svm.dcs.rhbnc.ac.uk/

9. Support Vector Machine - The Software
http : //www.support − vector.net/software.html

10. Lagrangian Support Vector Machine Home Page
http : //www.cs.wisc.edu/dmi/lsvm

Figure 1: Example for query “support vector machine”. The two upper boxes
show the rankings returned by Google and MSNSearch. The lower box contains
the combined ranking presented to the user. The links the user clicked on are
marked in bold.

Section 4.2 shows that such a combined ranking always exists. An example
is given in Figure 1. The results of two search engines are combined into one
ranking that is presented to the user. Note that the abstracts and all other as-
pects of the presentation are unified, so that the user cannot tell which retrieval
strategy proposed a particular page. In the example, the user clicks on links 1,
3, and 7. What inference can one draw from these clicks?

Before going into a detailed statistical analysis in Section 5, let’s first analyze
this kind of data on an intuitive basis. If one assumes that a user scans the
combined ranking from top to bottom without skipping links, this setup ensures
that at any point during the scan the user has observed as many (±1) links from
the top of ranking A as from ranking B. In this way, the combined ranking gives
(almost) equal presentation bias to both search engines. If one further assumes
that the user is more likely to click on a more relevant link, and that the
abstract provides enough information to judge relevance better than random,
then the clicks convey information about the relative quality of the top ka ≈ kb

links from both retrieval strategies. If the user clicks more often on links from
retrieval strategy A, it is reasonable to conclude that the top ka ≈ kb links from
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A are more relevant than those from B. In the example from Figure 1 the user
must have seen the top 4 links from both individual rankings, since he clicked
on link 7 in the combined ranking. He decided to click on 3 links in the top 4
returned by Google (namely 1, 2, and 4), but only on 1 link from MSNSearch
(namely 1). It is reasonable to conclude, that (with probability larger than
random) the top 4 links from Google were judged to be better than those from
MSNSearch for this query. A detailed analysis of the statistical properties of
this type of data is subject to Section 5.

Summarizing Experiment Setup 2, it is a blind test in which clicks demon-
strate the relative user preference in an unbiased way. Furthermore, the usabil-
ity impact is low. In the worst case the user needs to scan twice as many links
as for the better individual ranking. But the user is never stuck with just the
worse retrieval strategy.

Before analyzing the statistical properties of the data generated in Experi-
ment Setup 2, let’s first consider the question of how a combined ranking can
be constructed.

4.2 Computing the Combined Ranking

An algorithm for generating a combined ranking according to Experiment Setup
2 is the following.

Algorithm 1 (Combine Rankings)
Input: ranking A = (a1, a2, . . .), ranking B = (b1, b2, . . .)
Call: combine(A,B,0,0,∅)
Output: combined ranking D
combine(A,B,ka,kb,D) {

if(ka = kb) {
if(A [ka + 1] /∈ D) { D := D + A [ka + 1]; }
combine(A,B,ka + 1,kb,D);

}
else {

if(B [kb + 1] /∈ D) { D := D + B [kb + 1]; }
combine(A,B,ka,kb + 1,D);

}
}

The following theorem shows that the algorithm always constructs a com-
bined ranking with the desired property, even if there are duplicates between
the two rankings.

Theorem 1 Algorithm 1 always produces a combined ranking D = (d1, d2, . . .)
from A = (a1, a2, . . .) and B = (b1, b2, . . .) so that for all n

{d1, . . . , dn} = {a1, . . . , aka
} ∪ {b1, . . . , bkb

} (1)

with kb ≤ ka ≤ kb + 1.
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Proof Induction over the recursion depth.

Assumption: combine(A,B,ka,kb,D) has already constructed a mixed ranking
with {d1, . . . , dnd

} = {a1, . . . , aka} ∪ {b1, . . . , bkb
} and kb ≤ ka ≤ kb + 1.

Start: Clearly this is true for the initial call combine(A,B,0,0,()).

Step: Given that the assumption is true, there are four cases to consider in
the current iteration:

Case ka = kb and A [ka + 1] /∈ D: Then A [ka + 1] is appended to
D and it holds that {d1, . . . , dnd

, dnd+1} = {a1, . . . , aka
, aka+1} ∪

{b1, . . . , bkb
} and ka = kb + 1.

Case ka = kb and A [ka + 1] ∈ D: Then A [ka + 1] is already in D so that
{d1, . . . , dnd

} = {a1, . . . , aka , aka+1} ∪ {b1, . . . , bkb
} and ka = kb + 1.

Case ka > kb and B [kb + 1] /∈ D: Then B [kb + 1] is appended to D and it
holds that {d1, . . . , dnd

, dnd+1} = {a1, . . . , aka
} ∪ {b1, . . . , bkb

, bkb+1}
and kb = ka, since ka − kb ≤ 1 by induction.

Case ka > kb and B [kb + 1] ∈ D: Then B [kb + 1] is already in D so
that {d1, . . . , dnd

} = {a1, . . . , aka}∪{b1, . . . , bkb
, bkb+1} and kb = ka,

since ka − kb ≤ 1 by induction.

Note that Algorithm 1 gives ranking A a slight presentation bias, since it
starts the combined ranking with a link from A and adds a link from A, if ka

and kb are equal. To avoid a systematic bias, the retrieval strategy to start
with is selected randomly.

For the simplicity reasons, the following treats ka and kb as if they were
always equal. This is a relatively weak assumption, since the difference between
ka and kb should have mean 0 due to randomization.

5 Theoretical Analysis

This section analyzes the statistical properties of the clickthrough data gener-
ated according to Experiment Setup 2. It will show how, under mild assump-
tions, this data is sufficient for statistical inference regarding the quality of
rankings.

5.1 Connecting Relevance and Clickthrough

Let’s consider the standard model of relevance with only two relevance values.
Each document is either relevant for a query and a user in a particular context,
or not. The quality of a retrieval function is higher the more relevant and the
less non-relevant links it retrieves.

For this binary relevance model, the user’s clicking behavior with respect
to the different retrieval functions can be described using the following model.
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Capital letters stand for random variables, while the corresponding non-capi-
talized letters stands for a realization of that random variable.

Pr(Ca, Cb, Cr, Cn, Ra, Na, Rb, Nb, R, N) (2)

Denote with l the number of links the user observes in the combined ranking.
Determined by l, let k = ka = kb be the number of links the user observes from
the tops of rankings A and B before stopping. Then Ca is the number of clicks
on links in the top k of ranking A, while Cb is the number of clicks on links in
the top k of ranking B. Cr (Cn) denotes the number of clicks on relevant (non-
relevant) links. Note, that ca plus cb does not necessarily sum to cr + cn, since
the same link can be in the top k of both retrieval functions. Similarly, Ra, Na,
Rb, and Nb are the numbers of relevant and non-relevant links in the top k of A
and B respectively. R and N are the total number of relevant and non-relevant
links in the top l of the combined ranking. Note that ra + na + rb + nb is not
necessarily equal to l = r + n, since both retrieval functions may propose the
same links.

Which variables in Equation (2) can be observed? Obviously, we can observe
Ca and Cb, as well as the total number of clicks Cr + Cn. Furthermore, we can
approximate l with the rank of the last link the user clicked on. This makes
it possible to compute k. To be precise, let D = (d1, d2, . . .) be the combined
ranking of A = (a1, a2, . . .) and B = (b1, b2, . . .). Furthermore, let u1, . . . , uf be
the ranks in D of the links the user clicked on sorted by increasing rank. Then
compute k as the minimum rank of cuf

in A and B

k = min
{
i : duf

=ai or duf
=bi

}
. (3)

Define k = 0 for queries without clicks. Furthermore, define Ca and Cb as

ca = | {ui : dui
∈ (a1, . . . , ak)} |, (4)

cb = | {ui : dui
∈ (b1, . . . , bk)} |. (5)

The central question is now: under which assumptions do these observed vari-
ables allow inference regarding the variables of key interest – namely the num-
bers of relevant links Ra and Rb retrieved by A and B respectively? Let’s first
state the assumption that users click more frequently on relevant links than on
non-relevant links.

Assumption 1 Given a ranking in which the user encounters r relevant links
and n non-relevant links before he stops browsing. Denote with c the number
of links the user clicks on, whereas cr of these links are relevant and cn are
non-relevant. Further denote with ra and rb the number of relevant links in the
top k of rankings A and B respectively. It holds that

E
(

Cr

R C
|ra − rb

)
− E

(
Cn

N C
|ra − rb

)
= ε > 0 (6)

for some ε > 0 and all differences between ra and rb with non-zero probability.
E(·) denotes the expectation.
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Intuitively, this assumption formalizes that users click on a relevant link
more frequently than on a non-relevant link by a difference of ε. The smaller ε,
the more does the user treat both relevant and non-relevant links the same. In
particular, ε = 0 if the user clicks on links uniformly at random.

In one respect, this assumption is very weak. It merely implies that users
can judge the relevance of a document given its abstract better than random,
and that they behave “rational” in the sense that they tend to explore relevant
links more frequently. Empirical results indicate that in the setting of inter-
active retrieval good abstracts can help users identify relevant documents [4].
However, the amount of information an abstract conveys about the relevance of
a document is likely to depend on the type of query (e.g. home-page finding vs.
fact finding). The assumption also states that the ε is constant over all values
of ra − rb. In how far this is true will be evaluated experimentally in Section
6.3.

Given Experiment Setup 2, the clicks on relevant and non-relevant links can
be further split up with respect to the different retrieval functions. Let’s denote
by Cra the number of clicks on relevant links from A and by Cna the number of
clicks on non-relevant links from A. The analogous quantities for B are Crb and
Cnb. Controlling the way of presenting the combined ranking to the users, one
can make sure that they cannot tell which search engine retrieved a particular
link. In the experimental setup used in this study, the same layout and abstract
generator were used to present links. So, it is reasonable to assume that the
distribution of clicks is not biased towards one retrieval strategy unless there is
a difference in the number of relevant links retrieved. This is formalized by the
following assumption.

Assumption 2

E(Ca,r|cr, cn, ra, na, rb, nb, r, n) = cr
ra

r
(7)

E(Ca,n|cr, cn, ra, na, rb, nb, r, n) = cn
na

n
(8)

E(Cb,r|cr, cn, ra, na, rb, nb, r, n) = cr
rb

r
(9)

E(Cb,n|cr, cn, ra, na, rb, nb, r, n) = cn
nb

n
(10)

Intuitively, the assumption states that the only reason for a user clicking
on a particular link is due to the relevance of the link, but not due to other
influence factors connected with a particular retrieval function. One model
that will produce the expected values from above is the following. Among the
r relevant links, the user clicks on links uniformly without dependence on the
retrieval function. This can be modeled by the hypergeometric distribution,
which will produce the expected values from above. Note that – as desired –
the distribution is symmetric with respect to swapping the retrieval functions
A and B.

With these assumptions, it is possible to prove the following theorem. In-
tuitively, the theorem states that under Experiment Setup 2, evaluating click-
through will lead to the same result as evaluating relevance judgments.
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Theorem 2 In Experiment Setup 2 and under Assumption 1 and Assumption
2, A retrieves more relevant links than B iff the clickthrough for A is higher
than clickthrough for B (and vice versa).

E(Ra) > E(Rb) ⇐⇒ E
(

Ca

C

)
> E

(
Cb

C

)
(11)

E(Ra) < E(Rb) ⇐⇒ E
(

Ca

C

)
< E

(
Cb

C

)
(12)

Proof Let’s start with proving (11). Instead of comparing the expected values,
it is equivalent to determine the sign of the expected difference as follows.

E
(

Ca

C

)
> E

(
Cb

C

)
(13)

⇔ E
(

Ca − Cb

C

)
≥ 0 (14)

Using that the number of clicks c equals the sum of cr and cn, the expected
difference can be decomposed.

E
(

Ca − Cb

C

)
=

∑
E

(
Ca − Cb

cr + cn
|cr, cn, ra, na, rb, nb, r, n

)
Pr(cr, cn, ra, na, rb, nb, r, n)

=
∑

E
(

(Ca,r+Ca,n)−(Cb,r+Cbn)
cr + cn

|cr, cn, ra, na, rb, nb, r, n

)
Pr(...)

Ca,r (Ca,n) denotes the number of clicks of relevant (non-relevant) links from
ranking A. The respective numbers for ranking B are Cb,r and Cb,n. Using As-

sumption 2 it is possible to replace E
(
(Ca,r+Ca,n)−(Cb,r+Cbn )

cr+cn
|cr, cn, ra, na, rb, nb, r, n

)
with a closed form expression.∑

E
(
(Ca,r+Ca,n)−(Cb,r+Cbn)

cr + cn
|cr, cn, ra, na, rb, nb, r, n

)
Pr(cr, cn, ra, na, rb, nb, r, n)

=
∑ 1

cr + cn

(
(cr

ra

r
+ cn

na

n
)− (cr

rb

r
+ cn

nb

n
)
)

Pr(cr, cn, ra, na, rb, nb, r, n)

=
∑ 1

c

(
cr

ra − rb

r
+ cn

na − nb

n

)
Pr(cr, cn, ra, na, rb, nb, r, n)

=
∑ 1

c

(
cr

ra − rb

r
+ cn

(k − ra)− (k − rb)
n

)
Pr(cr, cn, ra, na, rb, nb, r, n)

=
∑

(ra − rb)
( cr

r c
− cn

n c

)
Pr(cr, cn, ra, na, rb, nb, r, n)

=
∑

(ra − rb)E
(

Cr

R C
− Cn

N C
|ra − rb

)
Pr(ra − rb)
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Using Assumption 1, the expectation E
(

Cr

R C − Cn

N C |ra − rb

)
is positive and con-

stant, so that it does not influence the following inequality.∑
(ra−rb)E

(
Cr

R C
− Cn

N C
|ra−rb

)
Pr(ra−rb) ≥ 0 (15)

⇔
∑

(ra − rb) Pr(ra − rb) ≥ 0 (16)

⇔ E(Ra −Rb) ≥ 0 (17)
⇔ E(Ra) ≥ E(Rb) (18)

The proof of (12) is analogous.

5.2 Hypothesis Tests

The previous section showed that in order to detect a difference in the expected
numbers E(Ra) and E(Rb) of relevant links in A and B, it is sufficient to prove
that

E
(

Ca − Cb

C

)
(19)

is different from zero. Given n paired observations <
ca,i

ci
,

cb,i

ci
>, this question

can be addressed using a two-tailed paired t-test (see e.g. [16]). It assumes
that the difference X := Ca

C − Cb

C is distributed according to a normal distribu-
tion. The H0 hypothesis is that X has zero mean. The t-test rejects H0 at a
significance level of 95%, if

x̂ /∈
[
−tn−1,97.5

σ̂√
n

, tn−1,97.5
σ̂√
n

]
(20)

where n is the sample size, x̂ = 1
n

∑
( ca,i

ci
− cb,i

ci
) is the sample mean, σ̂2 =

1
n−1

∑
( ca,i

ci
− cb,i

ci
−x̂)2 is the sample variance, and tn−1,97.5 is the 97.5% quantile

point of the t-distribution with n− 1 degrees of freedom.
In practice, it is difficult to ensure that the assumption of normal distribu-

tion holds for small samples. To make sure that the results are not invalidated
by an inappropriate parametric test, let’s also consider a nonparametric test.
Instead of a testing the mean, such tests typically consider the median. In our
case, I will use a binomial sign test (i.e. McNemar’s test) (see e.g. [16]) to
detect a significant deviation of the median

M
(

Ca − Cb

C

)
(21)

from zero. Other test like the Wilcoxon rank test are more powerful, but the
binomial sign test requires the least assumptions. The binomial sign test counts
how often the difference ca

c − cb

c is negative and positive. Let the number of
negative differences be dn and the number of positive differences be dp. If the
distribution has zero median, these variables are binomially distributed with
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parameter p = 0.5. The test rejects the H0 hypothesis of zero median with
confidence greater 95%, if

2
min{dp,dn}∑

i=0

(
dn + dp

i

)
0.5dn+dp < 0.05 (22)

Note that the median equals the mean for symmetric distributions. Therefore
a significant result from a binomial sign test implies a significant difference of
the mean under the Gaussian assumption.

In the following empirical evaluation both the t-test and the binomial sign
test will be used in parallel.

6 Experiments

To evaluate the method proposed in this paper, it was applied to pairwise
comparisons between Google, MSNSearch, and a default strategy. The default
strategy is added as a baseline retrieval strategy and consists of the 50 (or less,
if fewer hits were returned) links from MSNSearch in reverse order. One can
expect that the default strategy performs substantially worse than both Google
and MSNSearch.

6.1 Data

The data was gathered from three users (including myself) during the 25th of
September and the 18th of October, 2001, using a simple proxy system. The
user types the query into a search form which connects to a CGI script. The
script selects two search engines in a randomized way, queries the individual
search engines, and composes the combined ranking. For each link the URL
and the title of the page are presented to the user. The user does not get any
clues about which search engine is responsible for which link in the combined
ranking. Each click of the user is routed through a proxy that records the action
and uses the HTTP-Location command to forward to the desired page.

Over all, 180 queries and 211 clicks were recorded. The average number
of clicks per query is 1.17. Among these are 39 queries without clicks. The
average number of words per query is 2.31. This is comparable to the findings
in [19] who report 2.35 words per query for an AltaVista query log. Reflecting
the distribution of WWW usage by researchers in computer science, many of
the queries were for personal home pages and known items. For such queries
the title and the URL provide a good summary for judging the relevance of a
page.

For evaluating the method proposed in this paper, manual relevance judg-
ments were collected for the whole dataset. For each of the 180 queries, the
top k links of both retrieval strategies (with k as defined in Equation (3)) were
judged according to binary relevance. Again, the judgments were performed in
a blind fashion. When assigning relevance judgments it was not observable how
any search engine ranked the link, and whether the user clicked on the link. In
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A B ca > cb ca < cb ca = cb > 0 ca = cb = 0 total
(A better) (B better) (tie)

Google MSNSearch 34 20 46 23 123
Google Default 18 1 3 12 34
MSNSearch Default 17 2 1 4 24

Table 2: Comparison using pairwise clickthrough data. The counts indicate for
how many queries a user clicked on more links in the top k of the respective
search engine.

A B ra > rb ra < rb ra = rb > 0 ra = rb = 0 total
(A better) (B better) (tie)

Google MSNSearch 26 17 51 29 123
Google Default 19 1 1 13 34
MSNSearch Default 15 1 0 8 24

Table 3: Comparison using manual relevance judgments. The counts indicate
for how many queries there were more relevant links in the top k of the respective
search engine.

particular, the order in which the links were presented for relevance judgment
was randomized to avoid systematic presentation bias. Overall, 180 links were
judged to be relevant1.

6.2 Does the Clickthrough Evaluation Agree with the Rel-
evance Judgments?

Table 2 shows the clickthrough data. Column 3 and 4 indicate for how many
queries the user clicked on more links from A or B respectively. According to
the binomial sign test, the differences between Google and Default, as well as
between MSNSearch and Default are significant. The difference between Google
and MSNSearch has a p-value of around 90%. The t-test delivers a similar p-
value. On average, 77% of the clicks per query were on links in the top k of
Google vs. 63% on links in the top k of MSNSearch. For Google vs. Random
(85% vs. 18%) and MSNSearch vs. Random (91% vs. 12%) the difference is
again significant.

How does this result compare to an evaluation with manual relevance judg-
ments? Table 3 has the same form as Table 2, but compares the number of links
judged relevant instead of the number of clicks. The conclusions from the man-
ual relevance judgments closely follow those from the clickthrough data. Again,
the difference between Google and Default, as well as MSNSearch and Default
is significant according to the binomial sign test. The difference between Google

1The equality with the number of queries is coincidental. Note that these 180 are not all
the existing relevant links, but merely those in the region of the ranking that was explored
by the user. In particular, no links were manually judged for queries without clicks.
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Ra −Rb

A B -1 +1
Google MSNSearch 0.73± 0.11 0.71± 0.09
Google Default — 0.76± 0.08
MSNSearch Default — 0.85± 0.07

Table 4: The estimated value of ε from Assumption 1 depending on the dif-
ference Ra − Rb with one standard error. Only such estimates are shown, for
which there are more than two observations.

and MSNSearch achieves a p-value of approximately 80%.
For all three comparisons, the result from Theorem 2 holds. The average

number of relevant links is higher for Google (0.81) than for MSNSearch (0.72)
in their pairwise comparison. For Google vs. Random the averages are 0.65
vs. 0.09, and for MSNSearch vs. Random the averages are 0.71 vs. 0.04. This
shows that the difference in clickthrough data from Experiment Setup 2 does
not only predict whether one retrieval strategy is better than another, but that
it also indicates the quantity of the difference.

While this validates that the model makes reasonable predictions, an anal-
ysis of the individual assumptions can provide further prove of its adequacy.

6.3 Is Assumption 1 Valid?

Assumption 1 states that the user clicks on more relevant links than non-relevant
links on average. In particular, it states that the difference is independent of
how many relevant links were suggested by retrieval strategy A compared to
B. Given the relevance judgments, this assumption can be tested against data.
Let Id be the set of queries with ra − rb = d and d 6= 0. Then Table 4 shows
the quantity

ε̂d =
1
Id

∑
Id

cr

c r
− 1

Id

∑
Id

cn

c n
(23)

for the three pairwise comparisons. Only those averages are shown, for which
there were more than 2 observations. The first observation is that the value
of ε is substantially above 0. This means that, in fact, users click much more
frequently on relevant links than on non-relevant links. Furthermore, the par-
ticular value of ε is rather stable independent of ra−rb. In particular, all values
are within errorbars. While this does not prove the validity of the assumption,
it does verify that it is not vastly invalid.

6.4 Is Assumption 2 Valid?

Assumption 2 states that users do not click more frequently on links from one
retrieval strategy independent of the relevance of the links. While it would take
orders of magnitude more data to verify Assumption 2 in detail, the following
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Cra Crb Cna Cnb

A B exp obs exp obs exp obs exp obs
Google MSNSearch 75.9 ≈ 78 67.8 ≈ 67 23.0 ≈ 26 22.8 ≈ 22
Google Default 21.0 ≈ 21 3.0 ≈ 3 6.7 ≈ 10 8.9 ≈ 8
MSNSearch Default 15.0 ≈ 15 1.0 ≈ 1 5.3 ≈ 9 5.4 ≈ 3

Table 5: Compares the expected (exp) number of clicks according to Assump-
tion 2 with the observed (obs) number of clicks.

summary already provides an effective check. If Assumption 2 holds, then the
following equalities hold.

E(Cr
Ra

R
) = E(Cr,a) (24)

E(Cr
Rb

R
) = E(Cr,b) (25)

E(Cn
Na

N
) = E(Cn,a) (26)

E(Cn
Nb

N
) = E(Cn,b) (27)

Accordingly, Table 5 compares the expected number of clicks (i.e. left side
of equations) with the observed number of clicks (right side of equations). In
general, the equalities appear to hold for real data. Only the observed numbers
of clicks on non-relevant links for the comparisons against the default strategy
are slightly elevated. However, this is not necessarily an inherent problem of
Assumption 2, but more likely a problem with the binary relevance scale. Such
relevance judgments cannot model small differences in relevance. This becomes
particularly obvious in the comparison of MSNSearch and Default (remember
that Default is the top 50 links of MSNSearch in reverse). A link in the top 10
of MSNSearch is likely to be more relevant than one ranked 40-50, even if it is
not strictly relevant. The slight user preference for ”non-relevant” links from
MSNSearch (and Google) is likely to be due to this unmeasured difference in
relevance. So, this clicking behavior is desirable, since it is likely to be related
to relevance in a more fine-grained relevance model.

7 Conclusions and Future Work

This paper presented a new method for evaluating retrieval functions that does
not require (expensive and slow) manual relevance judgments. Its key idea is to
design the user interface so that the resulting (cheap and timely) clickthrough
data conveys meaningful information about the relative quality of two retrieval
functions. This makes it possible to evaluate retrieval performance more eco-
nomically, without delay, and in a more user-centered way. As desired, the
measure reflects the preferences of the users in their current context, not that
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of an expert giving relevance judgments, and it evaluates only that portion of
the ranking observed by the user.

The paper introduces a theoretical model and shows under which assump-
tions clickthrough data will give the same results as an evaluation using optimal
relevance judgments. The predictions of the new method, as well as the individ-
ual assumptions are evaluated against real data. The results of the evaluation
using clickthrough data were found to closely follow the relevance judgments
and the assumptions were found to be reasonable.

Open questions include in how far this method can be applied in other do-
mains. In particular, it is not clear whether the method is equally effective also
for other types of users with different search interests and behaviors. Further-
more, it might be possible to incorporate other forms of unintrusive feedback,
like time spent on a page, scrolling behavior, etc.

Comparing a small set of hypotheses as considered in this paper is the most
basic form of learning. The eventual goal of this research is to automatically
learn retrieval functions. While previous such learning approaches [6, 2] require
explicit feedback data in form of relevance judgments, first results on exploit-
ing clickthrough data for learning a ranking function from relative preference
examples are available [9].
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