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Abstract

We propose a discriminative method for learning the parameters (e.g. cost
of substitutions, deletions, insertions) of linear sequence alignment models from
training examples. While the resulting training problem leads to an optimization
problem with an exponential number of constraints, we present asimple algorithm
that finds an arbitrarily close approximation after considering only a subset of the
constraints that is linear in the number of training examples and polynomial in the
length of the sequences. We also evaluate empirically that the method effectively
learns good parameter values while being computationally feasible.

1 Introduction

Methods for sequence alignment are common tools for analyzing sequence data rang-
ing from biological applications [3] to natural language processing [1]. They can be
thought of as measures of similarity between sequences where the similarity score is
the result of a discrete optimization problem that is typically solved via dynamic pro-
gramming. While the dynamic programming algorithm determines the general notion
of similarity (e.g. local alignment vs. global alignment), any such similarity measure
reguires specific parameter values beforeit is fully specified. Examples of such param-
eter values are the costs for substituting one sequence elements for another, as well as
costs for deletions and insertions. These parameter values greatly determine how well
the measure works for a particular task.

In this paper we tackle the problem of inferring the parameter values from training
data. Our goal isto find parameter values so that the resulting similarity measure best
reflects the desired notion of similarity. We consider training data where we have ex-
amples of similar and dissimilar sequences. Instead of assuming a generative model of
sequence alignment (e.g. [9]), we take a discriminative approach to training. In partic-
ular, we aim to find the set of parameter values that corresponds to the best similarity
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Figure 1: Example of alocal sequence alignment.

measure a given alignment algorithm can represent. Taking a large-margin approach,
we show that we can solve the resulting training problem efficiently for a large class
of alignment algorithms that implement a linear scoring function. While the resulting
optimization problems have exponentially many constraints, our algorithm finds an ar-
bitrarily good approximation after considering only a subset of constraints that scales
polynomially with the length of the sequences and linearly with the number of training
examples. We empirically and theoretically analyze the scaling of the algorithm and
show that the learned similarity score performswell on test data.

2 Sequence Alignment

Sequence alignment computes a similarity score for two (or more) sequences s, and
s from an alphabet ¥ = {1,..,0}. Anaignment a is a sequence of operations that
transforms one sequence into the other. In globa alignment, the whole sequence is
transformed. Inlocal alignment, only an arbitrarily sized subsequenceisaligned. Com-
monly used alignment operationsare“match” (m), “substitution” (s), “ deletion” (d) and
“insertion” (i). An example of alocal alignment is givenin Figure 1. In the example,
there are 6 matches, 1 substitution, and 1 insertion/del etion. With each operation there
isan associated cost/reward. Assuming areward of 3 for match, acost of —1 for substi-
tution, and a cost of —2 for insertion/deletion, the total alignment score D 3(s1, s2,a)
inthe exampleis 15. The optimal alignment a* is the one that maximizes the score for
agiven cost model.

More generally, we consider alignment algorithms that optimize a linear scoring
function D z(s1, s2,a) = @7 ¢(s1,52,a) Where ¢(s1, s2, a) is some function that gen-
erates features based on an alignment a (e.g. # of substitutions, # of deletions) and w
is agiven cost vector. ¢(s1,s2,a) depends on the particular alignment algorithm and
can be any feature vector. Finding the optimal alignment corresponds to the following
optimization problem

Dy (s1,82) = maz, [Dg(s1, s2,a)] = maz, [0 ¢(s1,52,a)] . (1)

Thistype of problemistypically solved viadynamic programming. In thefollowing we
consider local alignment via the Smith/Waterman algorithm [10]. However, the results
can be extended to any alignment algorithm that optimizes a linear scoring function
and that solves (1) globally optimally?.

1This aso holds for other structures besides sequences.



3 Inverse Sequence Alignment

Inverse sequence alignment is the problem of using training data to learn the param-
eters « of an alignment model and agorithm so that the resulting similarity measure
Dz(s1,s2) best represents the desired notion of similarity on new data. While previ-
ous approachesto this problem exist [5, 11], they are limited to special cases and very
small numbers of parameters. We will present an algorithm that appliesto any linear
alignment model with no restriction on the function or number of parameters.

We assume the following model, for which the notationisinspired by protein align-
ment. In protein alignment the goal is a similarity measure so that homologous protein
sequences are similar to a native sequence, but also so that non-homologous (i.e. de-
coy) sequences are not similar to the native sequence. We assume that examples are
generated i.i.d. according to adistribution P(s ™, s, SP). sV isthe native sequence,
st the homologous sequence, and S is a set of decoy sequences s”1, ..., sP¢. The
goal is a similarity measure so that native sequence sV and homolog s are more
similar than the native sequence s~ and any decoy s”7, i.e.

Du’}'(sNasH) > Dﬁ}'(SNasDj)' (2)

The goal of learning can be formulated in two reasonable ways based on two different
lossfunctions. Inthefirst setting, thegoal isto find the cost parameters« that minimize
the probability Errp () that the similarity with any decoy sequence D (s, s"i) is
higher than the similarity with the homolog sequence D (s, s).

Errs () :/A ( max Dg(sV,s%) > Dg(sV, )) dP(sN s SP) (3
sPiesp

Thefunction A(.) returns 1, if itsargument is false, 0 otherwise. In the second setting,

the goal is less ambitious. We do not want a homolog that is hecessarily more similar

than all decoys. Instead, we merely want to have the homol og sequence ranked highly,

but not necessarily on top of the ranking. In particular, we could optimize the average

rank of the homolog. Thisis equivalent to the following kind of error rate.

Erp(@) = [ 3 ADals52) > Dals™ ) aPsY 5, 57) (@

sPiesp

In the following, we consider only the first type of error Err £ () for conciseness.

4 A Maximum-Margin Approach to Learning the Cost
Parameters

The distribution P(s?, s, SP) is unknown. Hovvever, we have atraining sample S
from P( N st SP). It consists of native sequenceﬁ sV 8N, homolog sequenc&:.
si .., sH, and a set of decoy sequences SP, ..., SP for each native sV, ..., sIV. As
a simplifying assumption, we assume that between native and homolog sequences the
dignment al¥# ..., aN # of maximum score is known?. The goal isto find an optimal

2For protein alignment, for example, this could be generated via structural alignment.



@ so that the error rate Err 5 () is low. First, we consider the case where there exists
a such that the error on the training set

Errg (i ZA( max Dg(s fv, 5;7) < Dg(sY, f)) (5)
JesD
is zero. Since we assume a scoring function that is linear in the parameters
Ds(s1,82,a) = W' ¢(s1, 2,0), (6)

the condition of zero training error can be written as a set of linear inequality con-
straints. There is one constraint for each combination of native sequence sV, decoy

sequencesi 7, and possible alignment a of s NIntOSi

Vsi? € SP¥a:  Dy(sl,s17,a) < Da(sY, st ™)
7)
Vs,?j ES,?Va: Dw(sg, E, a) < Dg (ﬁ, g,afVH)

This approach of writing the training problem as alinear system follows the method in
[8] proposed for the special case of global alignment without free insertions/del etions.
However, for the general case in Equation (7) the number of constraintsis exponential,
since the number of alignments a between sV and s; Di is exponential in the length of

sN and s; Di Unlike the restricted casein [8], standard optimization a gorithms cannot
handle this size problem. To overcomethis limitation, in Section 5 we will propose an
algorithm that exploits the special structure of Equation (7) so that it needs to examine
only a subset that is at most linear in the number of training examplesn.
If the set of inequalitiesin Equation (7) isfeasible, there will typically be morethan
one solution @*. To specify a unique solution, we select the « for which the similar-
ity of the homolog D (s, s, pNH) is uniformly most different from the similarity

'n,7 n’pz

Dy (sN,s $D 1) of the best alignment with any decoy. This corresponds to

mazx o; i S;

J SD
the maximum- margin principle employed in Support Vector Machines[12]. Denoting
the margin by ¢ and restricting the L > norm of @ to make the problem well-posed, this

leads to the following optimization problem.

Max.g 5(52 (8)

Vsy' € SPVa:  Dg(sY,s”.a) < Di(sy,si,al¥ ) = C)
(10)

Vs € SVa:  Dy(sy . s7,a) < Dy(sy sy ,a ) — 6 (11)
||| =1 (12

Due to the linearity of the similarity function (6), the length of « is a free variable
and we can fix it to 1/J. Substituting for ¢ and rearranging leads to the equivalent
optimization problem

ming —wTw (13



st)j € SlDVa : (d)(s{v, s{{,aé\m) — QS(S{V, sf)j,a)) w>1 (14)
(15)
Vs,?j ES,?Va: (d)(sN sH aZNH)—qS(sg,sgf,a))u'iZ 1 (16)

Since this quadratic program (QP) has a positive-definite objective function and (feasi-
ble) linear constraints, it is strictly convex. This meansit has a unique global minimum
and no local minima[4]. The constraints are similar to the ordinal regression approach
in[6] and it has astructure similar to the Ranking SVM described in [7] for information
retrieval. However, the number of constraintsis much larger.

To alow errorsin the training set, we introduce slack variables ¢ ; [2]. Correspond-
ing to the error measure Err 4 (1) we have one slack variablefor each native sequence.
Thisisdifferent fromanormal classification or regression SVM, wherethereisadiffer-
ent slack variable for each constraint. The slacks enter the objective function according
to atrade-off parameter C'. For simplicity, we consider only the case where the slacks
enter the objective function squared.

1 n
min ; ¢ §1ET1I)' +CY & (17)
i=1
stj € SPVa : (d)(s{v, st aNVH) — ¢(sV, sfj,a)) w>1-&  (18)
(19)
stf EST?Va: ((b(sg,sg,aﬁw{)—(b(sg,sff,a))u'fz1—§n (20)

Note that "7, &2 is an upper bound on the training error Err§ (). Therefore, the
agorithm minimizesthe training error Err £ () while maximizing margin.

5 Training Algorithm

Due to the exponential number of constraints, standard optimization software cannot
handle the number of constraints resulting from problems of interesting size. However,
by exploiting the special structure of the problem, we propose the following algorithm
that finds the solution of (17)-(20) after examining only asmall number of constraints.
The algorithm proceeds by greedily adding constraints from (18)-(20) to aworking set
K. Theagorithm stops, when all constraintsin (18)-(20) are fulfilled up to a precision
of e.



NH
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Input: nativesequencess?, ..., sV, homolog sequencess ¥, ..., s dignmentsal¥ ¥ | ..., a

9 Sp = Sp

sets of decoy sequences SP, ..., SD | tolerated approximation error e > 0.

e forifromlton
— forj from1to|SP|
x find a* = argmaz, [U_J'T(j)(sN S~Dj,a)] via dynamic program-
ming

« DT (g(s, 51, al ) = g(sN 5P ")) < 1= & — €

D
(2
- K = Ku{aT (o(s), 8, al) - o(s¥ 57, 0%) 2 1- &
1
2

- solve QP (W, §) = argmin
K.

until(K = Korg)
Output: @

The following two theorems show that the algorithm returns the correct solution
and that it stops after O(n) iterations through the repeat-loop.

Theorem 1 (CORRECTNESS)

The algorithm returns an approximation to (17)-(20) that has an objective value not
higher than the solution of (17)-(20), and that fulfills all constraints up to a precision
of e. For e = 0, thealgorithm returns the solution (&*, E*) of (17)-(20).

Proof Letw™ and&; bethesolution of (17)-(20). Sncethe algorithmsolvesthe QP on
a subset of the constraintsin each iteration, it must return a solution « with @7 @ +
Oy, & < tulw + O Y, &2, Thisfollows from the fact that decreasing the
feasible region cannot lead to a lower minimum.

It is left to show that the algorithm does not terminate before all constraints (18)-
(20) arefulfilled up to precision e. Inthefinal iteration, the algorithm finds the highest
scoring alignment o™ for each decoy and checkswhether the constraint w7 (¢ (s, s, aN ) —
p(sN, siDj ,a%)) < 1—¢&; — eisfulfilled. Three cases can occur: First, the constraint
can be violated and the algorithm will not terminate yet. Second, it is already in K
and is fulfilled by construction. Third, the constraint is not in K but fulfilled anyway
and it is not added. If the constraint is fulfilled, the constraints for all other alignments
into this decoy are fulfilled as well, since we checked the constraint for which the mar-
gin was smallest for the given . It follows that the algorithm terminates only if all

constraints are fulfilled up to precisione. i

Similarly, it can be shown that for e > 0 the algorithm finds a solution so that the
KKT-conditions of the Wolfe Dual of (17)-(20) are fulfilled up to a precision of e. We
omit the proof for brevity.



Theorem 2 (TERMINATION)
The algorithm stops after adding at most

2V R?
2

(21)

€
constraintsto the set K. V' isthe minimum of (17)-(20) and R? is a constant bounded
by the maximumof (¢ (s, sH aNH) — ¢(sV, 577 a))? + L

i 124 »YWyg 1 7% 2C"

Proof Thefirst part of the proof is to show that the objective value increases by some
constant with every constraint that is added to K. Denote with V. the solution V}, =
Py, &) = ming s5@" @ + C 37, & subject to K, after adding k constraints.
This primal optimization problem can be transformed into an equivalent problem of
theformVj, = P(&}") = ming @' @' subject to K}, where each constraint has the
forma?z > 1with@ = (¢(s¥, s, aNH)— (s, 577 a*); 0;...;0;1/v/2C; 0; ...; 0)
Its correspondingWblfe dual is D(d}) = mazaso Yoo g i—5 Yooy Y5y ;@5
At the solution D(aly) = P(wy) = P(wy, k) =V}, and for every feasible point
D(@) < P(w,£). Primal and dual are connected via @' = Y5 a7Z;. Addinga
constraint to the dual with "7, = Ele alZ;Tp11 < 1— e meansextending the
dual to

k E k k
1 - Lo »
Dyi1(@jyq) = ma>><0 az_—E E :alaJx z; + ak+1_ak+1§ ;T $k+1_§0‘k+1$k+1
=1 i=1j=1 i=1
k
> D * = = 1 2 =2
> Dp(d;) + max g1 — Qptl E QG Tilhy1 — S Thgy
ap41>0 2

i=1

1

~ 2 =2

> Dp(dy)+ max apsr —opp1(l—€) — o1 Ty
ap4+120 2

Solving the remaining scalar optimization problem over a; showsthat aj,, > 0
andthat Vi1 > Vi + 2R2

Snce the algorithm only adds constraints that are violated by the current solution
by more than e, after adding k0. = 2VR constraints the solution V;,, .. over the
subset ;. isatleast Vi, = > Vo + 2‘25 23; = 0+ V. Any additional constraint
that is violated by more than e would lead to a minimum that is larger than V. Since
the minimum over a subset of constraints can only be smaller than the minimum over

all constraints, there cannot be any more constraints violated by more than e and the
algorithmstops. 1

max maz

The theorem directly leads to the conclusion that the maximum number of con-
straints in K scales linearly with the number of training examples n, since V' can be
upper bounded as V' < C * n using the feasible point @ = 0 and E: 1in (17)-(20).
Furthermore, it scales only polynomially with the length of the sequences, since R is
polynomial in the length of the sequences.

While the number of constraints can potentially explode for small values of ¢, ex-
perience with Support Vector Machines for classification showed that relatively large
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Figure 2: Left: Train and test error ratesfor the 3 and the 403 parameter model depend-
ing on the number of training examples. Right: Typical learned substitution matrix
after 40 training examples for the 403-parameter model.

values of € are sufficient without loss of generalization performance. We will verify the
efficiency and the prediction performance of the algorithm empirically in thefollowing.

6 Experiments

To analyze the behavior of the algorithm under varying conditions, we constructed a
synthetic dataset according to the following sequence and alignment model. The native
sequence and the decoys are generated by drawing randomly from a 20 letter al phabet
¥ = {1,..,20} so that letter ¢ € ¥ has probability ¢/210. Each sequence has length
50, and there are 10 decoys per native. To generate the homolog, we generate an
alignment string of length 30 consisting of 4 characters “ match”, “substitute”, “insert”
, “delete”. For simplicity of illustration, substitutions are aways ¢ — (¢ mod 20) + 1.
While we experiment with several alignment models, we only report typical results
here where matches occur with probability 0.2, substitutions with 0.4, insertion with
0.2, deletion with 0.2. The homolog is created by applying the alignment string to a
randomly selected substring of the native. The shortening of the sequences through
insertions and deletions is padded by additional random characters.

Figure 2 shows training and test error rates for two models depending on the num-
ber of training examples averaged over 10 trials. Thefirst model has only 3 parameters
(“match”, “substitute”, “insert/delete”) and uses a uniform substitution matrix. The
second model also learns the 400 parameters of the substitution matrix, resulting in a
total of 403 parameters. We chose C = 0.01 and ¢ = 0.1. The left-hand graph of
Figure 2 shows that for the 403-parameter model, the generalization error is high for
small numbers of training examples, but quickly drops as the number of examplesin-
creases. The 3-parameter model cannot fit the data as well. Its training error starts out
much higher and training and test error essentially converge after only afew examples.
The right-hand graph of Figure 2 shows the learned matrix of substitution costsfor the
403-parameter model. As desired, the elements of the matrix are close to zero except
for the off-diagonal. This captures the substitution model ¢ — (¢ mod 20) + 1.

Figure 3 analyzes the efficiency of the algorithm via the number of constraints that
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Figure 3: Number of constraints added to K depending on the number of training
examples (left) and the value of € (right). If not stated otherwise, e = 0.1, C = 0.01,

andn = 20.

are added to K before convergence. The left-hand graph shows the scaling with the
number of training examples. As predicted by Theorem 2, the number of constraints
grows (sub-)linearly with the number of examples. Furthermore, the actual number
of constraints is small enough so that it can easily be handled by standard quadratic
optimization software. The right-hand graph shows how the number of constraints
in the final K changes with log(e). The observed scaling appears to be better than
suggested by the upper bound in Theorem 2. A good value for € is0.1. We observed
that larger values lead to worse prediction accuracy, while smaller values decrease
efficiency while not providing further benefit.

7 Conclusions

The paper presented a discriminative learning approach to inferring the cost parameters
of alinear sequence alignment model from training data. We proposed an algorithm for
solving the resulting training problem and showed its efficiency both theoretically and
empirically. Experiments show that the algorithm can effectively learn the alignment
parameters on a synthetic task.

We are currently applying the algorithm to learning alignment models for protein
homology detection. An open question is whether it is possible to remove the assump-
tion that the alignment between native and homolog is known while maintaining the
tractability of the problem.
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