
Cutting-Plane Training of Structural SVMs

Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

Abstract Discriminative training approaches like structural SVMs have shown
much promise for building highly complex and accurate models in areas like natural
language processing, protein structure prediction, and information retrieval. How-
ever, current training algorithms are computationally expensive or intractable on
large datasets. To overcome this bottleneck, this paper explores how cutting-plane
methods can provide fast training not only for classification SVMs, but also for
structural SVMs. We show that for an equivalent “1-slack” reformulation of the lin-
ear SVM training problem, our cutting-plane method has time complexity linear in
the number of training examples. In particular, the number of iterations does not
depend on the number of training examples, and it is linear in the desired precision
and the regularization parameter. Furthermore, we present an extensive empirical
evaluation of the method applied to binary classification, multi-class classification,
HMM sequence tagging, and CFG parsing. The experiments show that the cutting-
plane algorithm is broadly applicable and fast in practice. On large datasets, it is
typically several orders of magnitude faster than conventional training methods de-
rived from decomposition methods like SVM-light, or conventional cutting-plane
methods. Implementations of our methods are available at www.joachims.org.

Key words: Structural SVMs, Support Vector Machines, Structured Output Predic-
tion, Training Algorithms

Thorsten Joachims
Dept. of Computer Science, Cornell University, Ithaca, NY, USA, e-mail: tj@cs.cornell.edu

Thomas Finley
Dept. of Computer Science, Cornell University, Ithaca, NY, USA, e-mail: tomf@cs.cornell.edu

Chun-Nam John Yu
Dept. of Computer Science, Cornell University, Ithaca, NY, USA, e-mail: cnyu@cs.cornell.edu

1

2 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

1 Introduction

Consider the problem of learning a function with complex outputs, where the predic-
tion is not a single univariate response (e.g., 0/1 for classification or a real number
for regression), but a complex multivariate object. For example, the desired pre-
diction is a tree in natural language parsing, or a total ordering in web search, or
an alignment between two amino acid sequences in protein threading. Further in-
stances of such structured prediction problems are ubiquitous in natural language
processing, bioinformatics, computer vision, and many other application domains.

Recent years have provided intriguing advances in extending methods like Logis-
tic Regression, Perceptrons, and Support Vector Machines (SVMs) to global train-
ing of such structured prediction models (e.g., Lafferty et al, 2001; Collins, 2004;
Collins and Duffy, 2002; Taskar et al, 2003; Tsochantaridis et al, 2004). In contrast
to conventional generative training, these methods are discriminative (e.g., condi-
tional likelihood, empirical risk minimization). Akin to moving from Naive Bayes to
an SVM for classification, this provides greater modeling flexibility through avoid-
ance of independence assumptions, and it was shown to provide substantially im-
proved prediction accuracy in many domains (e.g., Lafferty et al, 2001; Taskar et al,
2003; Tsochantaridis et al, 2004; Taskar et al, 2004; Yu et al, 2007). By eliminating
the need to model statistical dependencies between features, discriminative training
enables us to freely use more complex and possibly interdependent features, which
provides the potential to learn models with improved fidelity. However, training
these rich models with a sufficiently large training set is often beyond the reach of
current discriminative training algorithms.

We focus on the problem of training structural SVMs in this paper. Formally, this
can be thought of as solving a convex quadratic program (QP) with a large (typi-
cally exponential or infinite) number of constraints. Existing algorithm fall into two
groups. The first group of algorithms relies on an elegant polynomial-size reformu-
lation of the training problem (Taskar et al, 2003; Anguelov et al, 2005), which is
possible for the special case of margin-rescaling (Tsochantaridis et al, 2005) with
linearly decomposable loss. These smaller QPs can then be solved, for example,
with general-purpose optimization methods (Anguelov et al, 2005) or decompo-
sition methods similar to SMO (Taskar et al, 2003; Platt, 1999). Unfortunately,
decomposition methods are known to scale super-linearly with the number of ex-
amples (Platt, 1999; Joachims, 1999), and so do general-purpose optimizers, since
they do not exploit the special structure of this optimization problem. But most sig-
nificantly, the algorithms in the first group are limited to applications where the
polynomial-size reformulation exists. Similar restrictions also apply to the extragra-
dient method (Taskar et al, 2005), which applies only to problems where subgradi-
ents of the QP can be computed via a convex real relaxation, as well as exponentiated
gradient methods (Bartlett et al, 2004; Globerson et al, 2007), which require the abil-
ity to compute “marginals” (e.g. via the sum-product algorithm). The second group
of algorithms works directly with the original, exponentially-sized QP. This is feasi-
ble, since a polynomially-sized subset of the constraints from the original QP is al-
ready sufficient for a solution of arbitrary accuracy (Joachims, 2003; Tsochantaridis

Cutting-Plane Training of Structural SVMs 3

et al, 2005). Such algorithms either take stochastic subgradient steps (Collins, 2002;
Ratliff et al, 2007; Shalev-Shwartz et al, 2007), or build a cutting-plane model which
is easy to solve directly (Tsochantaridis et al, 2004). The algorithm in (Tsochan-
taridis et al, 2005) shows how such a cutting-plane can be constructed efficiently.
Compared to the subgradient methods, the cutting-plane approach does not take a
single gradient step, but always takes an optimal step in the current cutting-plane
model. It requires only the existence of an efficient separation oracle, which makes
it applicable to many problems for which no polynomially-sized reformulation is
known. In practice, however, the cutting-plane method of Tsochantaridis et al (2005)
is known to scale super-linearly with the number of training examples. In particular,
since the size of the cutting-plane model typically grows linearly with the dataset
size (see (Tsochantaridis et al, 2005) and Section 5.5), QPs of increasing size need
to be solved to compute the optimal steps, which leads to the super-linear runtime.

In this paper, we explore an extension of the cutting-plane method presented in
(Joachims, 2006) for training linear structural SVMs, both in the margin-rescaling
and in the slack-rescaling formulation (Tsochantaridis et al, 2005). In contrast to
the cutting-plane method presented in (Tsochantaridis et al, 2005), we show that
the size of the cutting-plane models and the number of iterations are independent of
the number of training examples n. Instead, their size and the number of iterations
can be upper bounded by O(C

ε), where C is the regularization constant and ε is the
desired precision of the solution (see Optimization Problems OP2 and OP3). Since
each iteration of the new algorithm takes O(n) time and memory, it also scales O(n)
overall with the number of training examples both in terms of computation time and
memory. Empirically, the size of the cutting-plane models and the QPs that need to
be solved in each iteration is typically very small (less than a few hundred) even for
problems with millions of features and hundreds of thousands of examples.

A key conceptual difference of the new algorithm compared to the algorithm of
Tsochantaridis et al (2005) and most other SVM training methods is that not only
individual data points are considered as potential Support Vectors (SVs), but also
linear combinations of those. This increased flexibility allows for solutions with
far fewer non-zero dual variables, and it leads to the small cutting-plane models
discussed above.

The new algorithm is applicable to all structural SVM problems where the sep-
aration oracle can be computed efficiently, which makes it just as widely applica-
ble as the most general training algorithms known to date. Even further, following
the original publication in (Joachims, 2006), Teo et al (2007) have already shown
that the algorithm can also be extended to Conditional Random Field training. We
provide a theoretical analysis of the algorithm’s correctness, convergence rate, and
scaling behavior for structured prediction. Furthermore, we present empirical results
for several structured prediction problems (i.e., multi-class classification, part-of-
speech tagging, and natural language parsing), and compare against conventional
algorithms also for the special case of binary classification. On all problems, the
new algorithm is substantially faster than conventional decomposition methods and
cutting-plane methods, often by several orders of magnitude for large datasets.

4 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

2 Structural Support Vector Machines

Structured output prediction describes the problem of learning a function

h : X −→ Y

where X is the space of inputs, and Y is the space of (multivariate and structured)
outputs. In the case of natural language parsing, for example, X is the space of
sentences, and Y is the space of trees over a given set of non-terminal grammar
symbols. To learn h, we assume that a training sample of input-output pairs

S = ((x1,y1), . . . ,(xn,yn)) ∈ (X ×Y)n

is available and drawn i.i.d.1 from a distribution P(X ,Y). The goal is to find a func-
tion h from some hypothesis space H that has low prediction error, or, more gener-
ally, low risk

RΔ
P (h) =

∫
X ×Y

Δ(y,h(x))dP(x,y) .

Δ(y, ȳ) is a loss function that quantifies the loss associated with predicting ȳ when y
is the correct output value. Furthermore, we assume that Δ(y,y) = 0 and Δ(y, ȳ)≥ 0
for y �= ȳ. We follow the Empirical Risk Minimization Principle (Vapnik, 1998) to
infer a function h from the training sample S. The learner evaluates the quality of a
function h ∈H using the empirical risk RΔ

S (h) on the training sample S.

RΔ
S (h) =

1
n

n

∑
i=1

Δ(yi,h(xi))

Support Vector Machines select an h ∈H that minimizes a regularized empirical
risk on S. For conventional binary classification where Y = {−1,+1}, SVM train-
ing is typically formulated as the following convex quadratic optimization problem 2

(Cortes and Vapnik, 1995; Vapnik, 1998).

Optimization Problem 1 (CLASSIFICATION SVM (PRIMAL))

min
www,ξi≥0

1
2

wwwT www+
C
n

n

∑
i=1

ξi

s.t. ∀i ∈ {1, ...,n} : yi(wwwT xi)≥ 1− ξi

It was shown that SVM training can be generalized to structured outputs (Altun
et al, 2003; Taskar et al, 2003; Tsochantaridis et al, 2004), leading to an optimiza-

1 Note, however, that all formal results in this paper also hold for non i.i.d. data, since our algo-
rithms do not rely on the order or distribution of the examples.
2 For simplicity, we consider the case of hyperplanes passing through the origin. By adding a
constant feature, an offset can easily be simulated.

Cutting-Plane Training of Structural SVMs 5

tion problem that is similar to multi-class SVMs (Crammer and Singer, 2001) and
extending the Perceptron approach described in (Collins, 2002). The idea is to learn
a discriminant function f : X ×Y → ℜ over input/output pairs from which one
derives a prediction by maximizing f over all y ∈Y for a specific given input x.

hwww(x) = argmax
y∈Y

fwww(x,y)

We assume that fwww(x,y) takes the form of a linear function

fwww(x,y) = wwwTΨ (x,y)

where www ∈ ℜN is a parameter vector and Ψ (x,y) is a feature vector relating input
x and output y. Intuitively, one can think of f www(x,y) as a compatibility function
that measures how well the output y matches the given input x. The flexibility in
designing Ψ allows us to employ SVMs to learn models for problems as diverse
as natural language parsing (Taskar et al, 2004; Tsochantaridis et al, 2004), protein
sequence alignment (Yu et al, 2007), learning ranking functions that optimize IR
performance measures (Yue et al, 2007), and segmenting images (Anguelov et al,
2005).

For training the weights www of the linear discriminant function, the standard
SVM optimization problem can be generalized in several ways (Altun et al, 2003;
Joachims, 2003; Taskar et al, 2003; Tsochantaridis et al, 2004, 2005). This paper
uses the formulations given in (Tsochantaridis et al, 2005), which subsume all other
approaches. We refer to these as the “n-slack” formulations, since they assign a dif-
ferent slack variable to each of the n training examples. Tsochantaridis et al (2005)
identify two different ways of using a hinge loss to convex upper bound the loss,
namely “margin-rescaling” and “slack-rescaling”. In margin-rescaling, the position
of the hinge is adapted while the slope is fixed,

ΔMR(y,hwww(x)) = max
ȳ∈Y
{Δ(y, ȳ)−wwwTΨ(x,y)+wwwTΨ(x, ȳ)} ≥ Δ(y,hwww(x)) (1)

while in slack-rescaling, the slope is adjusted while the position of the hinge is fixed.

ΔSR(y,hwww(x)) = max
ȳ∈Y
{Δ(y, ȳ)(1−wwwTΨ(x,y)+wwwTΨ(x, ȳ))} ≥ Δ(y,hwww(x)) (2)

This leads to the following two training problems, where each slack variable ξ i

is equal to the respective ΔMR(yi,hwww(xi)) or ΔSR(yi,hwww(xi)) for training example
(xi,yi).

6 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

Optimization Problem 2 (n-SLACK STRUCTURAL SVM WITH MARGIN-
RESCALING (PRIMAL))

min
www,ξξξ≥000

1
2

wwwT www+
C
n

n

∑
i=1

ξi

s.t. ∀ȳ1 ∈Y : wwwT [Ψ(x1,y1)−Ψ(x1, ȳ1)]≥ Δ(y1, ȳ1)− ξ1

...

s.t. ∀ȳn ∈Y : wwwT [Ψ(xn,yn)−Ψ(xn, ȳn)]≥ Δ(yn, ȳn)− ξn

Optimization Problem 3 (n-SLACK STRUCTURAL SVM WITH SLACK-
RESCALING (PRIMAL))

min
www,ξξξ≥000

1
2

wwwT www+
C
n

n

∑
i=1

ξi

s.t. ∀ȳ1 ∈ Y : wwwT [Ψ(x1,y1)−Ψ(x1, ȳ1)]≥ 1− ξ1

Δ(y1, ȳ1)
...

s.t. ∀ȳn ∈ Y : wwwT [Ψ(xn,yn)−Ψ(xn, ȳn)]≥ 1− ξn

Δ(yn, ȳn)
The objective is the conventional regularized risk used in SVMs. The constraints

state that for each training example (xi,yi), the score wwwTΨ (xi,yi) of the correct struc-
ture yi must be greater than the score wwwTΨ (xi, ȳ) of all incorrect structures ȳ by a
required margin. This margin is 1 in slack-rescaling, and equal to the loss Δ(y i, ȳ) in
margin rescaling. If the margin is violated, the slack variable ξ i of the example be-
comes non-zero. Note that ξ i is shared among constraints from the same example.
The correct labels yi’s are not excluded from the constraints because they corre-
spond to non-negativity constraints on the slack variables ξ i. It is easy to verify that
for both margin-rescaling and for slack-rescaling, ∑ξi is an upper bound on the
empirical risk RΔ

S (h) on the training sample S.
It is not immediately obvious that Optimization Problems OP2 and OP3 can be

solved efficiently since they have O(n|Y |) constraints. |Y | is typically extremely
large (e.g., all possible alignments of two amino-acid sequence) or even infinite
(e.g., real-valued outputs). For the special case of margin-rescaling with linearly
decomposable loss functions Δ , Taskar et al. (Taskar et al, 2003) have shown that
the problem can be reformulated as a quadratic program with only a polynomial
number of constraints and variables.

A more general algorithm that applies to both margin-rescaling and slack-
rescaling under a large variety of loss functions was given in (Tsochantaridis et al,
2004, 2005). The algorithm relies on the theoretical result that for any desired pre-
cision ε , a greedily constructed cutting-plane model of OP2 and OP3 requires only
O(n

ε2) many constraints (Joachims, 2003; Tsochantaridis et al, 2005). This greedy
algorithm for the case of margin-rescaling is Algorithm 1, for slack-rescaling it leads

Cutting-Plane Training of Structural SVMs 7

Algorithm 1 for training Structural SVMs (with margin-rescaling) via the n-Slack
Formulation (OP2).
1: Input: S = ((x1 ,y1), . . . , (xn,yn)), C, ε
2: Wi← /0, ξi← 0 for all i = 1, ...,n
3: repeat
4: for i=1,...,n do
5: ŷ← argmaxŷ∈Y {Δ(yi, ŷ)−wwwT [Ψ(xi,yi)−Ψ(xi, ŷ)]}
6: if Δ(yi, ŷ)−wwwT [Ψ(xi,yi)−Ψ(xi, ŷ)] > ξi + ε then
7: Wi←Wi ∪{ŷ}
8: (www,ξξξ)← argminwww,ξξξ≥000

1
2 wwwT www+ C

n ∑n
i=1 ξi

s.t. ∀ȳ1 ∈W1 : wwwT [Ψ(x1,y1)−Ψ(x1, ȳ1)]≥ Δ(y1, ȳ1)−ξ1
...

∀ȳn ∈Wn : wwwT [Ψ(xn,yn)−Ψ(xn, ȳn)]≥ Δ(yn , ȳn)−ξn

9: end if
10: end for
11: until no Wi has changed during iteration
12: return(www,ξ)

Algorithm 2 for training Structural SVMs (with slack-rescaling) via the n-Slack
Formulation (OP3).
1: Input: S = ((x1 ,y1), . . . , (xn,yn)), C, ε
2: Wi← /0, ξi← 0 for all i = 1, ...,n
3: repeat
4: for i=1,...,n do
5: ŷ← argmaxŷ∈Y {Δ(yi, ŷ)(1−wwwT [Ψ(xi,yi)−Ψ(xi, ŷ)])}
6: if Δ(yi, ŷ)(1−wwwT [Ψ(xi,yi)−Ψ(xi, ŷ)]) > ξi + ε then
7: Wi←Wi ∪{ŷ}
8: (www,ξξξ)← argminwww,ξξξ≥000

1
2 wwwT www+ C

n ∑n
i=1 ξi

s.t. ∀ȳ1 ∈W1 : wwwT Δ(y1, ȳ1) [Ψ(x1,y1)−Ψ(x1, ȳ1)]≥ Δ(y1, ȳ1)−ξ1
...

∀ȳn ∈Wn : wwwT Δ(yn , ȳn) [Ψ(xn,yn)−Ψ(xn, ȳn)]≥ Δ(yn, ȳn)−ξn

9: end if
10: end for
11: until no Wi has changed during iteration
12: return(www,ξ)

to Algorithm 2. The algorithms iteratively construct a working set W = W 1∪ ...∪Wn

of constraints, starting with an empty working set W = /0. The algorithms iterate
through the training examples and find the constraint that is violated most by the
current solution www,ξξξ (Line 5). If this constraint is violated by more than the desired
precision ε (Line 6), the constraint is added to the working set (Line 7) and the QP
is solved over the extended W (Line 8). The algorithms terminate when no con-
straint is added in the previous iteration, meaning that all constraints in OP2 or OP3
are fulfilled up to a precision of ε . The algorithm is provably efficient whenever
the most violated constraint can be found efficiently. The procedure in Line 5 for
finding the most violated constraint is called the “separation oracle”. The argmax in

8 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

Line 5 has an efficient solution for a wide variety of choices for Ψ , Y , and Δ (see
e.g., Tsochantaridis et al, 2005; Joachims, 2005; Yu et al, 2007; Yue et al, 2007)),
and often it involves the same algorithm for making predictions (see Eq. (1)).

Related to Algorithm 1 is the method proposed in (Anguelov et al, 2005), which
applies to the special case where the argmax in Line 5 can be computed as a linear
program. This allows them not to explicitly maintain a working set, but implicitly
represent it by folding n linear programs into the quadratic program OP2. To this
special case also applies the method of Taskar et al (2005), which casts the training
of max-margin structured predictors as a convex-concave saddle-point problem. It
provides improved scalability compared to an explicit reduction to a polynomially-
sized QP, but involves the use of a special min-cost quadratic flow solver in the
projection steps of the extragradient method.

Exponentiated gradient methods, originally proposed for online learning of lin-
ear predictors (Kivinen and Warmuth, 1997), have also been applied to the training
of structured predictors (Globerson et al, 2007; Bartlett et al, 2004). They solve the
optimization problem in the dual, and treat conditional random field and structural
SVM within the same framework using Bregman divergences. Stochastic gradient
methods Vishwanathan et al (2006) have been applied to the training of conditional
random field on large scale problems, and exhibit faster rate of convergence than
BFGS methods. Recently, subgradient methods and their stochastic variants (Ratliff
et al, 2007) have also been proposed to solve the optimization problem in max-
margin structured prediction. While not yet explored for structured prediction, the
PEGASOS algorithm (Shalev-Shwartz et al, 2007) has shown promising perfor-
mance for binary classification SVMs. Related to such online methods is also the
MIRA algorithm (Crammer and Singer, 2003), which has been used for training
structured predictors (e.g. McDonald et al (2005)). However, to deal with the expo-
nential size of Y , heuristics have to be used (e.g. only using a k-best subset of Y),
leading to only approximate solutions of Optimization Problem OP2.

3 Training Algorithm

While polynomial runtime was established for most algorithms discussed above,
training general structural SVMs on large-scale problems is still a challenging prob-
lem. In the following, we present an equivalent reformulation of the training prob-
lems for both margin-rescaling and slack-rescaling, leading to a cutting-plane train-
ing algorithm that has not only provably linear runtime in the number of training
examples, but is also several orders of magnitude faster than conventional cutting-
plane methods (Tsochantaridis et al, 2005) on large-scale problems. Nevertheless,
the new algorithm is equally general as Algorithms 1 and 2.

Cutting-Plane Training of Structural SVMs 9

3.1 1-Slack Formulation

The first step towards the new algorithm is a reformulation of the optimization prob-
lems for training. The key idea is to replace the n cutting-plane models of the hinge
loss – one for each training example – with a single cutting plane model for the sum
of the hinge-losses. Since there is only a single slack variable in the new formula-
tions, we refer to them the “1-slack” formulations.

Optimization Problem 4 (1-SLACK STRUCTURAL SVM WITH MARGIN-
RESCALING (PRIMAL))

min
www,ξ≥0

1
2

wwwT www+C ξ

s.t. ∀(ȳ1, ..., ȳn) ∈ Y n :
1
n

wwwT
n

∑
i=1

[Ψ(xi,yi)−Ψ(xi, ȳi)]≥ 1
n

n

∑
i=1

Δ(yi, ȳi)− ξ

Optimization Problem 5 (1-SLACK STRUCTURAL SVM WITH SLACK-
RESCALING (PRIMAL))

min
www,ξ≥0

1
2

wwwT www+C ξ

s.t. ∀(ȳ1, ..., ȳn)∈Y n :
1
n

wwwT
n

∑
i=1

Δ(yi, ȳi)[Ψ(xi,yi)−Ψ (xi, ȳi)]≥ 1
n

n

∑
i=1

Δ(yi, ȳi)− ξ

While OP4 has |Y |n constraints, one for each possible combination of labels
(ȳ1, ..., ȳn)∈Y n, it has only one slack variable ξ that is shared across all constraints.
Each constraint corresponds to a tangent to RΔMR

S (h) and RΔSR
S (h) respectively, and

the set of constraints forms an equivalent model of the risk function. Specifically, the
following theorems show that ξ ∗ = RΔMR

S (hw∗) at the solution (w∗,ξ ∗) of OP4, and

ξ ∗ = RΔSR
S (hw∗) at the solution (w∗,ξ ∗) of OP5, since the n-slack and the 1-slack

formulations are equivalent in the following sense.

Theorem 1. (EQUIVALENCE OF OP2 AND OP4)
Any solution www∗ of OP4 is also a solution of OP2 (and vice versa), with ξ ∗ =

1
n ∑n

i=1 ξ ∗i .

Proof. Generalizing the proof in (Joachims, 2006), we will show that both optimiza-
tion problems have the same objective value and an equivalent set of constraints. In
particular, for every www the smallest feasible ξ and ∑n

i ξi are equal.
For a given www, each ξi in OP2 can be optimized individually, and the smallest

feasible ξi given www is achieved for

ξi = max
ȳi∈Y
{Δ(yi, ȳi)−wwwT [Ψ(xi,yi)−Ψ(xi, ȳi)]}.

For OP4, the smallest feasible ξ for a given www is

10 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

Algorithm 3 for training Structural SVMs (with margin-rescaling) via the 1-Slack
Formulation (OP4).
1: Input: S = ((x1 ,y1), . . . , (xn,yn)), C, ε
2: W ← /0
3: repeat
4: (www,ξ)← argminwww,ξ≥0

1
2 wwwT www+Cξ

s.t. ∀(ȳ1, ..., ȳn) ∈W : 1
n wwwT

n
∑

i=1
[Ψ(xi,yi)−Ψ(xi, ȳi)]≥ 1

n

n
∑

i=1
Δ(yi, ȳi)−ξ

5: for i=1,...,n do
6: ŷi← argmaxŷ∈Y {Δ(yi, ŷ)+wwwTΨ(xi, ŷ)}
7: end for
8: W ←W ∪{(ŷ1, ..., ŷn)}
9: until 1

n

n
∑

i=1
Δ(yi, ŷi)− 1

n wwwT
n
∑

i=1
[Ψ(xi,yi)−Ψ(xi, ŷi)]≤ ξ + ε

10: return(www,ξ)

ξ = max
(ȳ1,...,ȳn)∈Y n

{
1
n

n

∑
i=1

Δ(yi, ȳi)−wwwT 1
n

n

∑
i=1

[Ψ(xi,yi)−Ψ(xi, ȳi)]

}
.

Since the function can be decomposed linearly in ȳ i, for any given www, each ȳi can be
optimized independently.

ξ =
n

∑
i=1

max
ȳi∈Y

{
1
n

Δ(yi, ȳi)− 1
n

wwwT [Ψ(xi,yi)−Ψ(xi, ȳi)]
}

=
1
n

n

∑
i=1

ξi

Therefore, the objective functions of both optimization problems are equal for any
www given the corresponding smallest feasible ξ and ξ i. Consequently this is also true
for www∗ and its corresponding smallest feasible slacks ξ ∗ and ξ ∗i . ��
Theorem 2. (EQUIVALENCE OF OP3 AND OP5)
Any solution www∗ of OP5 is also a solution of OP3 (and vice versa), with ξ ∗ =

1
n ∑n

i=1 ξ ∗i .

Proof. Analogous to Theorem 1. ��

3.2 Cutting-Plane Algorithm

What could we possibly have gained by moving from the n-slack to the 1-slack
formulation, exponentially increasing the number of constraints in the process? We
will show in the following that the dual of the 1-slack formulation has a solution that
is extremely sparse, with the number of non-zero dual variables independent of the
number of training examples. To find this solution, we propose Algorithms 3 and 4,
which are generalizations of the algorithm in (Joachims, 2006) to structural SVMs.

Similar to the cutting-plane algorithms for the n-slack formulations, Algorithms 3
and 4 iteratively construct a working set W of constraints. In each iteration, the al-

Cutting-Plane Training of Structural SVMs 11

Algorithm 4 for training Structural SVMs (with slack-rescaling) via the 1-Slack
Formulation (OP5).
1: Input: S = ((x1 ,y1), . . . , (xn,yn)), C, ε
2: W ← /0
3: repeat
4: (www,ξ)← argminwww,ξ≥0

1
2 wwwT www+Cξ

s.t. ∀(ȳ1, ..., ȳn) ∈W : 1
n wwwT

n
∑

i=1
Δ(yi, ȳi) [Ψ(xi,yi)−Ψ(xi, ȳi)]≥ 1

n

n
∑

i=1
Δ(yi, ȳi)−ξ

5: for i=1,...,n do
6: ŷi← argmaxŷ∈Y {Δ(yi, ŷ)(1−wwwT [Ψ(xi,yi)−Ψ(xi, ŷ)])}
7: end for
8: W ←W ∪{(ŷ1, ..., ŷn)}
9: until 1

n

n
∑

i=1
Δ(yi, ŷi)− 1

n wwwT
n
∑

i=1
Δ(yi, ŷi) [Ψ(xi,yi)−Ψ(xi, ŷi)]≤ ξ + ε

10: return(www,ξ)

gorithms compute the solution over the current W (Line 4), find the most violated
constraint (Lines 5-7), and add it to the working set. The algorithm stops once no
constraint can be found that is violated by more than the desired precision ε (Line
9). Unlike in the n-slack algorithms, only a single constraint is added in each iter-
ation. The following theorems characterize the quality of the solutions returned by
Algorithms 3 and 4.

Theorem 3. (CORRECTNESS OF ALGORITHM 3)
For any training sample S = ((x1,y1), . . . ,(xn,yn)) and any ε > 0, if (www∗,ξ ∗) is the
optimal solution of OP4, then Algorithm 3 returns a point (www,ξ) that has a better
objective value than (www∗,ξ ∗), and for which (www,ξ + ε) is feasible in OP4.

Proof. We first verify that Lines 5-7 in Algorithm 3 compute the vector (ŷ1, ..., ŷn) ∈
Y n that maximizes

ξ ′ = max
(ŷ1,...,ŷn)∈Y n

{
1
n

n

∑
i=1

Δ(yi, ŷi)− 1
n

wwwT
n

∑
i=1

[Ψ(xi,yi)−Ψ(xi, ŷi)]

}
.

ξ ′ is the minimum value needed to fulfill all constraints in OP4 for the current www.
The maximization problem is linear in the ŷi, so one can maximize over each ŷi

independently.

ξ ′ =
1
n

n

∑
i=1

max
ŷ∈Y

{
Δ(yi, ŷ)−wwwT [Ψ (xi,yi)−Ψ(xi, ŷ)]

}
(3)

= −1
n

n

∑
i=1

wwwTΨ(xi,yi)+
1
n

n

∑
i=1

max
ŷ∈Y

{
Δ(yi, ŷ)+wwwTΨ(xi, ŷ)

}
(4)

Since the first sum in Equation (4) is constant, the second term directly corresponds
to the assignment in Line 6. As checked in Line 9, the algorithm terminates only if
ξ ′ does not exceed the ξ from the solution over W by more than ε as desired.

12 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

Since the (www,ξ) returned by Algorithm 3 is the solution on a subset of the con-
straints from OP4, it holds that 1

2www∗T www∗+Cξ ∗ ≥ 1
2wwwT www+Cξ . ��

Theorem 4. (CORRECTNESS OF ALGORITHM 4)
For any training sample S = ((x1,y1), . . . ,(xn,yn)) and any ε > 0, if (www∗,ξ ∗) is the
optimal solution of OP5, then Algorithm 4 returns a point (www,ξ) that has a better
objective value than (www∗,ξ ∗), and for which (www,ξ + ε) is feasible in OP5.

Proof. Analogous to the proof of Theorem 3. ��
Using a stopping criterion based on the accuracy of the empirical risk ξ ∗ is very

intuitive and practically meaningful, unlike the stopping criteria typically used in
decomposition methods. Intuitively, ε can be used to indicate how close one wants
to be to the empirical risk of the best parameter vector. In most machine learning ap-
plications, tolerating a training error that is suboptimal by 0.1% is very acceptable.
This intuition makes selecting the stopping criterion much easier than in other train-
ing methods, where it is usually defined based on the accuracy of the Kuhn-Tucker
Conditions of the dual (see e.g., Joachims, 1999). Nevertheless, it is easy to see
that ε also bounds the duality gap of the solution by Cε . Solving the optimization
problems to an arbitrary but fixed precision of ε is essential in our analysis below,
making sure that computation time is not wasted on computing a solution that is
more accurate than necessary.

We next analyze the time complexity of Algorithms 3 and 4. It is easy to see that
each iteration of the algorithm takes n calls to the separation oracle, and that for the
linear kernel the remaining work in each iteration scales linearly with n as well. We
show next that the number of iterations until convergence is bounded, and that this
upper bound is independent of n.

The argument requires the Wolfe-dual programs, which are straightforward to
derive (see Appendix). For a more compact notation, we denote vectors of labels as
ȳ = (ȳ1, ..., ȳn) ∈ Y n. For such vectors of labels, we then define Δ(ȳ) and the inner
product HMR(ȳ, ȳ′) as follows. Note that yi and y j denote correct training labels,
while ȳi and ȳ′j denote arbitrary labels:

Δ(ȳ) =
1
n

n

∑
i=1

Δ(yi, ȳi) (5)

HMR(ȳ, ȳ′) = 1
n2

n
∑

i=1

n
∑
j=1

[
Ψ(xi,yi)TΨ(x j,y j)−Ψ (xi,yi)TΨ(x j, ȳ′j)

−Ψ(xi, ȳi)TΨ (x j,y j)+Ψ(xi, ȳi)TΨ (x j, ȳ′j)
] (6)

The inner products Ψ (x,y)TΨ (x′,y′) are computed either explicitly or via a Kernel
K(x,y,x′,y′) = Ψ(x,y)TΨ(x′,y′). Note that it is typically more efficient to compute

HMR(ȳ, ȳ′)=
1
n2

[
n

∑
i=1

(Ψ (xi,yi)−Ψ(xi, ȳi))

]T[n

∑
j=1

(Ψ (x j,y j)−Ψ (x j, ȳ
′
j))

]
(7)

if no kernel is used. The dual of the 1-slack formulation for margin-rescaling is:

Cutting-Plane Training of Structural SVMs 13

Optimization Problem 6 (1-SLACK STRUCTURAL SVM WITH MARGIN-
RESCALING (DUAL))

max
ααα≥0

D(ααα) = ∑
ȳ∈Y n

Δ(ȳ)αȳ− 1
2 ∑

ȳ∈Y n
∑

ȳ′∈Y n

αȳαȳ′HMR(ȳ, ȳ′)

s.t. ∑
ȳ∈Y n

αȳ = C

For the case of slack-rescaling, the respective H(ȳ, ȳ ′) is as follows. There is an
analogous factorization that is more efficient to compute if no kernel is used:

HSR(ȳ, ȳ′)= 1
n2

n
∑

i=1

n
∑
j=1

Δ(yi,ȳi)Δ(y j,ȳ′j)
[
Ψ(xi,yi)TΨ(x j,y j)−Ψ(xi,yi)TΨ(x j,ȳ′j)

−Ψ(xi,ȳi)TΨ(x j,y j)+Ψ (xi,ȳi)TΨ(x j,ȳ′j)
] (8)

=
1
n2

[
n

∑
i=1

Δ(yi,ȳi)(Ψ(xi,yi)−Ψ(xi,ȳi))

]T[n

∑
j=1

Δ(y j,ȳ
′
j)(Ψ(x j,y j)−Ψ(x j,ȳ

′
j))

]
(9)

The dual of the 1-slack formulation is:

Optimization Problem 7 (1-SLACK STRUCTURAL SVM WITH SLACK-
RESCALING (DUAL))

max
ααα≥0

D(ααα) = ∑
ȳ∈Y n

Δ(ȳ)αȳ− 1
2 ∑

ȳ∈Y n
∑

ȳ′∈Y n

αȳαȳ′HSR(ȳ, ȳ′)

s.t. ∑
ȳ∈Y n

αȳ = C

Using the respective dual solution ααα∗, one can compute inner products with the
weight vector www∗ solving the primal via

www∗TΨ(x,y) = ∑
ȳ∈Y n

α∗ȳ

(
1
n

n

∑
j=1

[
Ψ(x,y)TΨ(x j,y j)−Ψ(x,y)TΨ(x j, ȳ j)

])

=

[
1
n ∑

ȳ∈Y n

α∗ȳ
n

∑
j=1

[Ψ(x j,y j)−Ψ(x j, ȳ j)]

]T

Ψ(x,y)

for margin-rescaling and via

www∗TΨ(x,y) = ∑
ȳ∈Y n

α∗ȳ

(
1
n

n

∑
j=1

Δ(y j, ȳ j)
[
Ψ (x,y)TΨ (x j,y j)−Ψ(x,y)TΨ(x j, ȳ j)

])

=

[
1
n ∑

ȳ∈Y n

α∗ȳ
n

∑
j=1

Δ(y j, ȳ j) [Ψ(x j,y j)−Ψ(x j, ȳ j)]

]T

Ψ(x,y)

14 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

for slack-rescaling. We will show in the following that only a small (i.e., poly-
nomial) number of the α ȳ is non-zero at the solution. In analogy to classification
SVMs, we will refer to those ȳ with non-zero α ȳ as Support Vectors. However, note
that Support Vectors in the 1-slack formulation are linear combinations of multiple
examples. We can now state the theorem giving an upper bound on the number of
iterations of the 1-slack algorithms. The proof extends the one in (Joachims, 2006)
to general structural SVMs, and is based on the technique introduced in (Joachims,
2003) and generalized in (Tsochantaridis et al, 2005). The final step of the proof
uses an improvement developed in (Teo et al, 2007).

Theorem 5. (1-SLACK MARGIN-RESCALING SVM ITERATION COMPLEXITY)
For any 0 < C, 0 < ε ≤ 4R2C and any training sample S = ((x1,y1), . . . ,(xn,yn)),

Algorithms 3 terminates after at most⌈
log2

(
Δ

4R2C

)⌉
+
⌈

16R2C
ε

⌉
(10)

iterations. R2 = maxi,ȳ ||Ψ(xi,yi)−Ψ(xi, ȳ)||2, Δ = maxi,ȳ Δ(yi, ȳ), and �..� is the
integer ceiling function.

Proof. We will show that adding each new constraint to W increases the objective
value at the solution of the quadratic program in Line 4 by at least some constant
positive value. Since the objective value of the solution of OP6 is upper bounded by
CΔ (since www = 0 and ξ = Δ is a feasible point in the primal), the algorithm can only
perform a constant number of iterations before termination. The amount by which
the solution increases by adding one constraint that is violated by more than ε (i.e.,
the criteria in Line 9 of Algorithm 3 and Algorithm 4) to W can be lower bounded
as follows.

Let ŷ be the newly added constraint and let ααα be the solution of the dual before
the addition. To lower bound the progress made by the algorithm in each iteration,
consider the increase in the dual that can be achieved with a line search

max
0≤β≤C

{D(ααα + β ηηη)}−D(ααα). (11)

The direction ηηη is constructed by setting ηŷ = 1 and ηȳ = − 1
C αȳ for all other ȳ.

Note that the constraints on β and the construction of ηηη ensure that ααα + β ηηη never
leaves the feasible region of the dual.

To apply Lemma 2 (see Appendix) for computing the progress made by a line
search, we need a lower bound for ∇D(ααα)T ηηη and an upper bound for ηηηT Hηηη.
Starting with the lower bound for ∇D(ααα)T ηηη , note that

∂D(ααα)
∂αȳ

= Δ(ȳ)− ∑
ȳ′∈W

αȳ′HMR(ȳ, ȳ′) = ξ (12)

for all ȳ with non-zero αȳ at the solution over the previous working set W . For the
newly added constraint ŷ and some γ > 0,

Cutting-Plane Training of Structural SVMs 15

∂D(ααα)
∂αŷ

= Δ(ŷ)− ∑
ȳ′∈W

αȳ′HMR(ŷ, ȳ′) = ξ + γ ≥ ξ + ε (13)

by construction due to Line 9 of Algorithms 3. It follows that

∇D(ααα)T ηηη = ξ + γ− ∑
ȳ∈W

αȳ

C
ξ (14)

= ξ

(
1− 1

C ∑
ȳ∈W

αȳ

)
+ γ (15)

= γ. (16)

The following gives an upper bound for ηηηT Hηηη , where Hȳȳ′ = HMR(ȳ, ȳ′) for ȳ, ȳ′ ∈
W ∪{ŷ}.

ηηηT Hηηη = HMR(ŷ, ŷ)− 2
C ∑

ȳ∈W

αȳHMR(ȳ, ŷ)+
1

C2 ∑
ȳ∈W

∑
ȳ′∈W

αȳαȳ′HMR(ȳ, ȳ′)(17)

≤ R2 +
2
C

CR2 +
1

C2C2R2 (18)

= 4R2 (19)

The bound uses that −R2 ≤ HMR(ȳ, ŷ)≤ R2.
Plugging everything into the bound of Lemma 2 shows that the increase of the

objective is at least

max
0≤β≤C

{D(ααα + β ηηη)}−D(ααα)≥min

{
Cγ
2

,
γ2

8R2

}
(20)

Note that the first case applies whenever γ ≥ 4R2C, and that the second case applies
otherwise.

The final step of the proof is to use this constant increase of the objective value in
each iteration to bound the maximum number of iterations. First, note that α ȳ = 0
for all incorrect vectors of labels ȳ and α ȳ∗ = C for the correct vector of labels
ȳ∗= (y1, ...,yn) is a feasible starting point ααα0 with a dual objective of 0. This means
the initial optimality gap δ (0) = D(ααα∗)−D(ααα0) is at most CΔ , where ααα∗ is the
optimal dual solution. An optimality gap of δ (i) = D(ααα∗)−D(ααα i) ensures that

there exists a constraint that is violated by at least γ ≥ δ (i)
C . This means that the first

case of (20) applies while δ (i)≥ 4R2C2, leading to a decrease in the optimality gap
of at least

δ (i+1)≤ δ (i)− 1
2

δ (i) (21)

in each iteration. Starting from the worst possible optimality gap of δ (0) = CΔ , the
algorithm needs at most

16 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

i1 ≤
⌈

log2

(
Δ

4R2C

)⌉
(22)

iterations until it has reached an optimality gap of δ (i1)≤ 4R2C2, where the second
case of (20) becomes valid. As proposed in (Teo et al, 2007), the recurrence equation

δ (i+1)≤ δ (i)− 1
8R2C2 δ (i)2 (23)

for the second case of (20) can be upper bounded by solving the differential equation
∂δ (i)

∂ i =− 1
8R2C2 δ (i)2 with boundary condition δ (0) = 4R2C2. The solution is δ (i)≤

8R2C2

i+2 , showing that the algorithms does not need more than

i2 ≤ 8R2C2

Cε
(24)

iterations until it reaches an optimality gap of Cε when starting at a gap of 4R 2C2,
where ε is the desired target precision given to the algorithm. Once the optimal-
ity gap reaches Cε , it is no longer guaranteed that an ε-violated constraint exists.
However, such constraints may still exist and so the algorithm does not yet termi-
nate. But since each such constraint leads to an increase in the dual objective of at
least ε2

8R2 , only

i3 ≤
⌈

8R2C
ε

⌉
(25)

can be added before the optimality gap becomes negative. The overall bound results
from adding i1, i2, and i3. ��

Note that the proof of the theorem requires only a line search in each step, while
Algorithm 4 actually computes the full QP solution. This suggests the following.
On the one hand, the actual number of iterations in Algorithm 4 might be substan-
tially smaller in practice than what is predicted by the bound. On the other hand, it
suggests a variant of Algorithm 4, where the QP solver is replaced by a simple line
search. This may be beneficial in structured prediction problems where the separa-
tion oracle in Line 6 is particularly cheap to compute.

Theorem 6. (1-SLACK SLACK-RESCALING SVM ITERATION COMPLEXITY)
For any 0 <C, 0 < ε ≤ 4Δ 2R2C and any training sample S = ((x1,y1), . . . ,(xn,yn)),
Algorithms 4 terminate after at most⌈

log2

(
1

4R2ΔC

)⌉
+
⌈

16R2Δ2C
ε

⌉
(26)

iterations. R2 = maxi,ȳ ||Ψ(xi,yi)−Ψ(xi, ȳ)||2, Δ = maxi,ȳ Δ(yi, ȳ), and �..� is the
integer ceiling function.

Cutting-Plane Training of Structural SVMs 17

Proof. The proof for the case of slack-rescaling is analogous. The only difference is
that −Δ 2R2 ≤ HSR(ȳ, ȳ′)≤ Δ2R2. ��

The O(1
ε) convergence rate in the bound is tight, as the following example

shows. Consider a multi-class classification problem with infinitely many classes
Y = {1, ...,∞} and a feature space X = ℜ that contains only one feature. This
problem can be encoded using a feature map Ψ (x,y) which takes value x in po-
sition y and 0 everywhere else. For a training set with a single training example
(x,y) = ((1),1) and using the zero/one-loss, the 1-slack quadratic program for both
margin-rescaling and slack-rescaling is

min
www,ξ≥0

1
2

wwwT www+Cξ (27)

s.t. wwwT [Ψ(x,1)−Ψ(x,2)]≥ 1− ξ
wwwT [Ψ(x,1)−Ψ(x,3)]≥ 1− ξ
wwwT [Ψ(x,1)−Ψ(x,4)]≥ 1− ξ
...

Let’s assume without loss of generaltity that Algorithm 3 (or equivalently Algo-
rithm 4) introduces the first constraint in the first iteration. For C ≥ 1

2 the solution
over this working set is wwwT = (1

2 ,− 1
2 ,0,0, . . .) and ξ = 0. All other constraints are

now violated by 1
2 and one of them is selected at random to be added to the working

set in the next iteration. It is easy to verify that after adding k constraints, the solu-
tion over the working set is wwwT = (k

k+1 ,− 1
k+1 , . . . ,− 1

k+1 ,0,0, . . .) for C ≥ 1
2 , and all

constraints outside the working set are violated by ε = 1
k+1 . It therefore takes O(1

ε)
iterations to reach a desired precision of ε .

The O(C) scaling with C is tight as well, at least for small values of C. For
C ≤ 1

2 , the solution over the working set after adding k constraints is wwwT =
(C,−C

k , . . . ,−C
k ,0,0, . . .). This means that after k constraints, all constraints out-

side the working set are violated by ε = C
k . Consequently, the bounds in (10) and

(26) accurately reflect the scaling with C up to the log-term for C ≤ 1
2 .

The following theorem summarizes our characterization of the time complex-
ity of the 1-slack algorithms. In real applications, however, we will see that Algo-
rithms 3 scales much better than what is predicted by these worst-case bounds both
w.r.t. C and ε . Note that a “support vector” (i.e. point with non-zero dual variable)
no longer corresponds to a single data point in the 1-slack dual, but is typically a
linear combination of data points.

Corollary 1. (TIME COMPLEXITY OF ALGORITHMS 3 AND 4 FOR LINEAR

KERNEL)
For any n training examples S = ((x1,y1), . . . ,(xn,yn)) with

maxi,ȳ ||Ψ(xi,yi)−Ψ(xi, ȳ)||2 ≤ R2 < ∞ and maxi,ȳ Δ(yi, ȳ) ≤ Δ < ∞ for all
n, the 1-slack cutting plane Algorithms 3 and 4 with constant ε and C using the
linear kernel

18 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

• require at most O(n) calls to the separation oracle,
• require at most O(n) computation time outside the separation oracle,
• find a solution where the number of support vectors (i.e. the number of non-zero

dual variables in the cutting-plane model) does not depend on n,

for any fixed value of C > 0 and ε > 0.

Proof. Theorems 5 and 6 shows that the algorithms terminate after a constant num-
ber of iterations does not depend on n. Since only one constraint is introduced in
each iteration, the number of support vectors is bounded by the number of iterations.
In each iteration, the algorithm performs exactly n calls to the separation oracle,
which proves the first statement. Similarly, the QP that is solved in each iteration is
of constant size and therefore requires only constant time. It is easily verified that
the remaining operations in each iterations can be done in time O(n) using Eqs. (7)
and (9). ��

We further discuss the time complexity for the case of kernels in the following
section. Note that the linear-time algorithm proposed in (Joachims, 2006) for train-
ing binary classification SVMs is a special case of the 1-slack methods developed
here. For binary classification X = ℜN and Y = {−1,+1}. Plugging

Ψ(x,y) =
1
2

yx and Δ(y,y′) =
{

0 if y = y′
1 otherwise

(28)

into either n-slack formulation OP2 or OP3 produces the standard SVM optimiza-
tion problem OP1. The 1-slack formulations and algorithms are then equivalent to
those in (Joachims, 2006). However, the O(1

ε) bound on the maximum number of
iterations derived here is tighter than the O(1

ε2) bound in (Joachims, 2006). Using a
similar argument, it can also be shown the ordinal regression method in (Joachims,
2006) is a special case of the 1-slack algorithm.

3.3 Kernels and Low-Rank Approximations

For problems where a (non-linear) kernel is used, the computation time in each
iteration is O(n2) instead of O(n), since Eqs. (7) and (9) no longer apply. How-
ever, the 1-slack algorithm can easily exploit rank-k approximations, which we will
show reduces the computation time outside of the separation oracle from O(n 2) to
O(nk + k3). Let (x′1,y

′
1), ...,(x

′
k,y
′
k) be a set of basis functions so that the subspace

spanned by Ψ(x′1,y
′
1), ...,Ψ (x′k,y

′
k) (approximately) contains the solution www∗ of OP4

and OP5 respectively. Algorithms for finding such approximations have been sug-
gested in (Keerthi et al, 2006; Fukumizu et al, 2004; Smola and Schölkopf, 2000) for
classifications SVMs, and at least some of them can be extended to structural SVMs
as well. In the simplest case, the set of k basis functions can be chosen randomly
from the set of training examples.

Cutting-Plane Training of Structural SVMs 19

For a kernel K(.) and the resulting Gram matrix K with Ki j =Ψ(x′i,y′i)TΨ(x′j,y′j)=
K(x′i,y′i,x′j,y′j), we can compute the inverse L−1 of the Cholesky Decomposition L

of K in time O(k3). Assuming that www∗ actually lies in the subspace, we can equiva-
lently rewrite the 1-slack optimization problems as

Optimization Problem 8 (1-SLACK STRUCTURAL SVM WITH MARGIN-
RESCALING AND k BASIS FUNCTIONS (PRIMAL))

min
βββ ,ξ≥0

1
2

βββ T βββ +C ξ

s.t.∀(ȳ1, ..., ȳn)∈Y n :
1
n

βββ T L−1
n

∑
i=1

⎛
⎜⎝

K(xi,yi,x′1,y
′
1)−K(xi,ȳi,x′1,y

′
1)

...
K(xi,yi,x′k,y

′
k)−K(xi,ȳi,x′k,y

′
k)

⎞
⎟⎠≥ 1

n

n

∑
i=1

Δ(yi,ȳi)− ξ

Optimization Problem 9 (1-SLACK STRUCTURAL SVM WITH SLACK-
RESCALING AND k BASIS FUNCTIONS (PRIMAL))

min
βββ ,ξ≥0

1
2

βββ T βββ +C ξ

s.t.∀(ȳ1,.., ȳn)∈Y n:
1
n

βββTL−1
n

∑
i=1

Δ(yi,ȳi)

⎛
⎜⎝

K(xi,yi,x′1,y
′
1)−K(xi,ȳi,x′1,y

′
1)

...
K(xi,yi,x′k,y

′
k)−K(xi,ȳi,x′k,y

′
k)

⎞
⎟⎠≥1

n

n

∑
i=1

Δ(yi,ȳi)−ξ

Intuitively, the values of the kernel K(.) with each of the k basis functions form
a new feature vector Ψ ′(x,y)T = (K(x,y,x′1,y

′
1), ...,K(x,y,x′k,y

′
k))

T describing each
example (x,y). After multiplication with L−1, OP8 and OP9 become identical to
a problem with linear kernel and k features, and it is straightforward to see that
Algorithms 3 and 4 apply to this new representation.

Corollary 2. (TIME COMPLEXITY OF ALGORITHMS 3 AND 4 FOR NON-LINEAR

KERNEL)
For any n training examples S = ((x1,y1), . . . ,(xn,yn)) with

maxi,ȳ ||Ψ(xi,yi)−Ψ(xi, ȳ)||2 ≤ R2 < ∞ and maxi,ȳ Δ(yi, ȳ) ≤ Δ < ∞ for all
n, the 1-slack cutting plane Algorithms 3 and 4 using a non-linear kernel

• require at most O(n) calls to the separation oracle,
• require at most O(n2) computation time outside the separation oracle,
• require at most O(nk + k3) computation time outside the separation oracle, if a

set of k ≤ n basis functions is used,
• find a solution where the number of support vectors does not depend on n,

for any fixed value of C > 0 and ε > 0.

Proof. The proof is analogous to that of Corollary 1. For the low-rank approxima-
tion, note that it is more efficient to once compute wwwT = βββ T L−1 before entering the
loop in Line 5, than to compute L−1Ψ ′(x,y) for each example. k3 is the cost of the
Cholesky Decomposition, but this needs to be computed only once. ��

20 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

4 Implementation

We implemented both the n-slack algorithms and the 1-slack algorithms in soft-
ware package called SVMstruct , which we make publicly available for download
at http://svmlight.joachims.org. SVMstruct uses SVM-light as the op-
timizer for solving the QP sub-problems. Users may adapt SVMstruct to their own
structural learning tasks by implementing API functions corresponding to task-
specific Ψ , Δ , separation oracle, and inference. User API functions are in C. A pop-
ular extension is SVMpython, which allows users to write API functions in Python
instead, and eliminates much of the drudge work of C including model serializa-
tion/deserialization and memory management.

An efficient implementation of the algorithms required a variety of design deci-
sions, which are summarized in the following. These design decisions have a sub-
stantial influence on the practical efficiency of the algorithms.

Restarting the QP Sub-Problem Solver from the Previous Solution. Instead of
solving each QP subproblem from scratch, we restart the optimizer from the dual
solution of the previous working set as the starting point. This applies to both the
n-slack and the 1-slack algorithms.

Batch Updates for the n-Slack Algorithm. Algorithm 1 recomputes the solution of
the QP sub-problem after each update to the working set. While this allows the algo-
rithm to potentially find better constraints to be added in each step, it requires a lot
of time in the QP solver. We found that it is more efficient to wait with recomputing
the solution of the QP sub-problem until 100 constraints have been added.

Managing the Accuracy of the QP Sub-Problem Solver. In the initial iterations,
a relatively low precision solution of the QP sub-problems is sufficient for identify-
ing the next violated constraint to add to the working set. We therefore adjust the
precision of the QP sub-problem optimizer throughout the optimization process for
all algorithms.

Removing Inactive Constraints from the Working Set. For both the n-slack and
the 1-slack algorithm, constraints that were added to the working set in early itera-
tions often become inactive later in the optimization process. These constraints can
be removed without affecting the theoretical convergence guarantees of the algo-
rithm, leading to smaller QP’s being solved in each iteration. At the end of each
iteration, we therefore remove constraints from the working set that have not been
active in the last 50 QP sub-problems.

Caching Ψ(xi,yi)−Ψ(xi, ŷi) in the 1-Slack Algorithm. If the separation oracle
returns a label ŷi for an example xi, the constraint added in the n-slack algorithm en-
sures that this label will never again produce an ε-violated constraint in a subsequent
iteration. This is different, however, in the 1-slack algorithm, where the same label
can be involved in an ε-violated constraint over and over again. We therefore cache
the f most recently used Ψ(xi,yi)−Ψ(xi, ŷi) for each training example xi (typically
f = 10 in the following experiments). Let’s denote the cache for example x i with Ci.

Cutting-Plane Training of Structural SVMs 21

Instead of asking the separation oracle in every iteration, the algorithm first tries to
construct a sufficiently violated constraint from the caches via

for i=1,...,n do
ŷi←maxŷ∈Ci{Δ(yi, ŷ)+wwwTΨ (xi, ŷ)}

end for
or the analogous variant for the case of slack-rescaling. Only if this fails will the
algorithm ask the separation oracle. The goal of this caching strategy is to decrease
the number of calls to the separation oracle. Note that in many applications, the
separation oracle is very expensive (e.g., CFG parsing).

Parallelization. While currently not implemented, the loop in Lines 5-7 of the 1-
slack algorithms can easily be parallelized. In principle, one could make use of up to
n parallel threads, each computing the separation oracle for a subset of the training
sample. For applications like CFG parsing, where more than 98% of the overall
runtime is spent on the separation oracle (see Section 5), parallizing this loop will
lead to a substantial speed-up that should be almost linear in the number of threads.

Solving the Dual of the QP Sub-Problems in the 1-Slack Algorithm. As indi-
cated by Theorems 5 and 6, the working sets in the 1-slack algorithm stay small
independent of the size of the training set. In practice, typically less then 100 con-
straints are active at the solutions and we never encountered a single instance where
the working set grew beyond 1000 constraints. This makes it advantageous to store
and solve the QP sub-problems in the dual instead of in the primal, since the dual
is not affected by the dimensionality of Ψ (x,y). The algorithm explicitly stores the
Hessian H of the dual and adds or deletes a row/column whenever a constraint is
added or removed from the working set. Note that this is not feasible for the n-slack
algorithm, since the working set size is typically orders of magnitude larger (often
> 100,000 constraints).

5 Experiments

For the experiments in this paper we will consider the following four applications,
namely binary classification, multi-class classification, sequence tagging with lin-
ear chain HMMs, and CFG grammar learning. They cover the whole spectrum of
possible applications, from multi-class classification involving a simple Y of low
cardinality and with a very inexpensive separation oracle, to CFG parsing with large
and complex structural objects and an expensive separation oracle. The particular
setup for the different applications is as follows.

Binary Classification. For binary classification X = ℜN and Y = {−1,+1}. Us-
ing

Ψ(x,y) =
1
2

yx and Δ(y, ȳ) = 100[y �= ȳ] =
{

0 if y = ȳ
100 otherwise

(29)

22 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

in the 1-slack formulation, OP4 results in the algorithm presented in (Joachims,
2006) and implemented in the SVM-perf software3. In the n-slack formulation, one
immediately recovers Vapnik et al.’s original classification SVM formulation of OP1
(Cortes and Vapnik, 1995; Vapnik, 1998) (up to the more convenient percentage-
scale rescaling of the loss function and the absence of the bias term), which we
solve using SVM-light.

Multi-Class Classification. This is another simple instance of a structual SVM,
where X = ℜN and Y = {1, ..,k}. Using Δ(y, ȳ) = 100[y �= ȳ] and

Ψmulti(x,y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
x
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(30)

where the feature vector x is stacked into position y, the resulting n-slack prob-
lem becomes identical to the multi-class SVM of Crammer and Singer (2001). Our
SVM-multiclass (V2.13) implementation3 is also built via the SVMstruct API. The
argmax for the separation oracle and the prediction are computed by explicit enu-
meration.

We use the Covertype dataset of Blackard, Jock & Dean as our benchmark for
the multi-class SVM. It is a 7-class problem with n = 522,911 examples and 54
features. This means that the dimensionality of Ψ (x,y) is N = 378.

Sequence Tagging with Linear Chain HMMs. In sequence tagging (e.g., Part-of-
Speech Tagging) each input x = (x1, ...,xl) is a sequence of feature vectors (one for
each word), and y = (y1, ...,yl) is a sequence of labels yi ∈ {1..k} of matching length.
Isomorphic to a linear chain HMM, we model dependencies between each y i and xi,
as well as dependencies between yi and yi−1. Using the definition ofΨmulti(x,y) from
above, this leads to a joint feature vector of

ΨHMM((x1, ...,xl),(y1, ...,yl)) =
l

∑
i=1

⎛
⎜⎜⎜⎜⎜⎝

Ψmulti(xi,yi)
[yi = 1][yi−1 = 1]
[yi = 1][yi−1 = 2]

...
[yi = k][yi−1 = k]

⎞
⎟⎟⎟⎟⎟⎠ . (31)

We use the number of misclassified tags Δ((y1, ...,yl),(y′1, ...,y
′
l)) = ∑l

i=1[yi �= y′i] as
the loss function. The argmax for prediction and the separation oracle are both com-
puted via the Viterbi algorithm. Note that the separation oracle is equivalent to the

3 Available at svmlight.joachims.org

Cutting-Plane Training of Structural SVMs 23

prediction argmax after adding 1 to the node potentials of all incorrect labels. Our
SVM-HMM (V3.10) implementation based on SVMstruct is also available online3.

We evaluate on the Part-of-Speech tagging dataset from the Penn Treebank cor-
pus (Marcus et al, 1993). After splitting the dataset into training and test set, it has
n = 35,531 training examples (i.e., sentences), leading to a total of 854,022 tags
over k = 43 labels. The feature vectors xi describing each word consist of binary
features, each indicating the presence of a particular prefix or suffix in the current
word, the previous word, and the following word. All prefixes and suffixes observed
in the training data are used as features. In addition, there are features encoding the
length of the word. The total number of features is approximately 430,000, leading
to a ΨHMM(x,y) of dimensionality N = 18,573,781.

Parsing with Context Free Grammars. We use natural language parsing as an
example application where the cost of computing the separation oracle is compar-
atively high. Here, each input x = (x1, ...,xl) is a sequence of feature vectors (one
for each word), and y is a tree with x as its leaves. Admissible trees are those that
can be constructed from a given set of grammar rules — in our case, all grammar
rules observed in the training data. As the loss function, we use Δ(y, ȳ) = 100[y �= ȳ],
and ΨCFG(x,y) has one feature per grammar rule that counts how often this rule was
applied in y. The argmax for prediction can be computed efficiently using a CKY
parser. We use the CKY parser implementation4 of Johnson (1998). For the separa-
tion oracle the same CKY parser is used after extending it to also return the second
best solution. Again, our SVM-CFG (V3.01) implementation based on SVM struct is
available online3.

For the following experiments, we use all sentences with at most 15 words from
the Penn Treebank corpus (Marcus et al, 1993). Restricting the dataset to short sen-
tences is not due to a limitation of SVMstruct , but due to the CKY implementation we
are using. It becomes very slow for long sentences. Faster parsers that use pruning
could easily handle longer sentences as well. After splitting the data into training
and test set, we have n = 9,780 training examples (i.e., sentences) and ΨCFG(x,y)
has a dimensionality of N = 154,655.

5.1 Experiment Setup

Unless noted otherwise, the following parameters are used in the experiments
reported below. Both the 1-slack (SVMstruct options “-w 3” and “-w 4” with
caching) and the n-slack algorithms (option “-w 0”) use ε = 0.1 as the stopping
criterion (option “-e 0.1”). Given the scaling of the loss for multi-class classifica-
tion and CFG parsing, this corresponds to a precision of approximately 0.1% of the
empirical risk for the 1-slack algorithm, and it is slightly higher for the HMM prob-
lem. For the n-slack problem it is harder to interpret the meaning of this ε , but we
will see in Section 5.7 that it gives solutions of comparable precision. As the value

4 Available at http://www.cog.brown.edu/∼mj/Software.htm

24 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

Table 1 Training CPU-time (in hours), number of calls to the separation oracle, and number of
support vectors for both the 1-Slack (with caching) and the n-Slack Algorithm. n is the number of
training examples and N is the number of features in Ψ(x,y).

CPU-Time # Sep. Oracle # Support Vec.
n N 1-slack n-slack 1-slack n-slack 1-slack n-slack

MultiC 522,911 378 1.05 1180.56 4,183,288 10,981,131 98 334,524
HMM 35,531 18,573,781 0.90 177.00 1,314,647 4,476,906 139 83,126
CFG 9,780 154,655 2.90 8.52 224,940 479,220 70 12,890

of C, we use the setting that achieves the best prediction performance on the test
set when using the full training set (C = 10,000,000 for multi-class classification,
C = 5,000 for HMM sequence tagging, and C = 20,000 for CFG parsing) (option
“-c”). As the cache size we use f = 10 (option “-f 10”). For multi-class clas-
sification, margin-rescaling and slack-rescaling are equivalent. For the others two
problems we use margin-rescaling (option “-o 2”). Whenever possible, runtime
comparisons are done on the full training set. All experiments are run on 3.6 GHz
Intel Xeon processors with 4GB of main memory under Linux.

5.2 How Fast is the 1-Slack Algorithm Compared to the n-Slack
Algorithm?

We first examine absolute runtimes of the 1-slack algorithm, and then analyze and
explain various aspects of its scaling behavior in the following. Table 1 shows the
CPU-time that both the 1-slack and the n-slack algorithm take on the multi-class,
sequence tagging, and parsing benchmark problems. For all problems, the 1-slack
algorithm is substantially faster, for multi-class and HMM by several orders of mag-
nitude.

The speed-up is largest for the multi-class problem, which has the least expensive
separation oracle. Not counting constraints constructed from the cache, less than 1%
of the time is spend on the separation oracle for the multi-class problem, while it
is 15% for the HMM and 98% for CFG parsing. Therefore, it is interesting to also
compare the number of calls to the separation oracle. In all cases, Table 1 shows that
the 1-slack algorithm requires by a factor between 2 and 4 fewer calls, accounting
for much of the time saved on the CFG problem.

The most striking difference between the two algorithms lies in the number of
support vectors they produce (i.e., the number of dual variables that are non-zero).
For the n-slack algorithm, the number of support vectors lie in the tens or hundreds
of thousands, while all solutions produced by the 1-slack algorithm have only about
100 support vectors. This means that the working sets that need to be solved in each
iteration are orders of magnitude smaller in the 1-slack algorithm, accounting for
only 26% of the overall runtime in the multi-class experiment compared to more
than 99% for the n-slack algorithm. We will further analyze this in the following.

Cutting-Plane Training of Structural SVMs 25

Table 2 Training CPU time (in seconds) for five binary classification problems comparing the 1-
slack algorithm (without caching) with SVM-light. n is the number of training examples, N is the
number of features, and s is the fraction of non-zero elements of the feature vectors. The SVM-
light results are quoted from (Joachims, 2006), the 1-slack results are re-run with the latest version
of SVM-struct using the same experiment setup as in (Joachims, 2006).

CPU-Time # Support Vec.
n N s 1-slack SVM-light 1-slack SVM-light

Reuters CCAT 804,414 47,236 0.16% 58.0 20,075.5 8 230388
Reuters C11 804,414 47,236 0.16% 71.3 5,187.4 6 60748
ArXiv Astro-ph 62,369 99,757 0.08% 4.4 80.1 9 11318
Covertype 1 522,911 54 22.22% 53.4 25,514.3 27 279092
KDD04 Physics 150,000 78 38.42% 9.2 1,040.2 13 99123

5.3 How Fast is the 1-Slack Algorithm Compared to Conventional
SVM Training Algorithms?

Since most work on training algorithms for SVMs was done for binary classifica-
tion, we compare the 1-slack algorithms against algorithms for the special case of
binary classification. While there are training algorithms for linear SVMs that scale
linearly with n (e.g., Lagrangian SVM (Mangasarian and Musicant, 2001) (using
the ∑ξ 2

i loss), Proximal SVM (Fung and Mangasarian, 2001) (using an L 2 regres-
sion loss), and Interior Point Methods (Ferris and Munson, 2003)), they use the
Sherman-Morrison-Woodbury formula (or matrix factorizations) for inverting the
Hessian of the dual. This requires operating on N×N matrices, which makes them
applicable only for problems with small N. The L2-SVM-MFN method (Keerthi
and DeCoste, 2005) avoids explicitly representing N×N matrices using conjugate
gradient techniques. While the worst-case cost is still O(snmin(n,N)) per iteration
for feature vectors with sparsity s, they observe that their method empirically scales
much better. The discussion in (Joachims, 2006) concludes that runtime is compara-
ble to the 1-slack algorithm implemented in SVM-perf. The 1-slack algorithm scales
linearly in both n and the sparsity s of the feature vectors, even if the total number
N of features is large (Joachims, 2006). Note that it is unclear whether any of the
conventional algorithms can be extended to structural SVM training.

The most widely used algorithms for training binary SVMs are decomposi-
tion methods like SVM-light (Joachims, 1999), SMO (Platt, 1999), and others
(Chang and Lin, 2001; Collobert and Bengio, 2001). Taskar et al. (Taskar et al,
2003) extended the SMO algorithm to structured prediction problems based on their
polynomial-size reformulation of the n-slack optimization problem OP2 for the spe-
cial case of decomposable models and decomposable loss functions. In the case of
binary classification, their SMO algorithm reduces to a variant of the traditional
SMO algorithm, which can be seen as a special case of the SVM-light algorithm.
We therefore use SVM-light as a representative of the class of decomposition meth-
ods. Table 2 compares the runtime of the 1-slack algorithm to SVM-light on five
benchmark problems with varying numbers of features, sparsity, and numbers of
training examples. The benchmarks include two text classification problems from

26 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

the Reuters RCV1 collection5 (Lewis et al, 2004), a problem of classifying ArXiv
abstracts, a binary classifier for class 1 of the Covertype dataset6 of Blackard,
Jock & Dean, and the KDD04 Physics task from the KDD-Cup 2004 (Caruana
et al, 2004). In all cases, the 1-slack algorithm is faster than SVM-light, which is
highly optimized to binary classification. On large datasets, the difference spans
several orders of magnitude.

After the 1-slack algorithm was originally introduced, new stochastic subgradi-
ent descent methods were proposed that are competitive in runtime for classification
SVMs, especially the PEGASOS algorithm (Shalev-Shwartz et al, 2007). While
currently only explored for classification, it should be possible to extend PEGA-
SOS also to structured prediction problems. Unlike exponentiated gradient methods
(Bartlett et al, 2004; Globerson et al, 2007), PEGASOS does not require the compu-
tation of marginals, which makes it equally easy to apply as cutting-plane methods.
However, unlike for our cutting-plane methods where the theory provides a practi-
cally effective stopping criterion, it is less clear when to stop primal stochastic sub-
gradient methods. Since they do not maintain a dual program, the duality gap cannot
be used to characterize the quality of the solution at termination. Furthermore, there
is a questions of how to incorporate caching into stochastic subgradient methods
while still maintaining fast convergence. As shown in the following, caching is es-
sential for problems where the separation oracle (or, equivalently, the computation
of subgradients) is expensive (e.g. CFG parsing).

5.4 How does Training Time Scale with the Number of Training
Examples?

A key question is the scalability of the algorithm for large datasets. While Corol-
lary 1 shows that an upper bound on the training time scales linearly with the number
of training examples, the actual behavior underneath this bound could potentially be
different. Figure 1 shows how training time relates to the number of training exam-
ples for the three structural prediction problems. For the multi-class and the HMM
problem, training time does indeed scale at most linearly as predicted by Corol-
lary 1, both with and without using the cache. However, the cache helps for larger
datasets, and there is a large advantage from using the cache over the whole range
for CFG parsing. This is to be expected, given the high cost of the separation oracle
in the case of parsing.

As shown in Figure 2, the scaling behavior of the 1-slack algorithm remains es-
sentially unchanged even when the regularization parameter C is not held constant,
but is set to the value that gives optimal prediction performance on the test set for
each training set size. The scaling with C is analyzed in more detail in Section 5.9.

5 http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lyrl2004 rcv1v2 README.htm
6 http://www.ics.uci.edu/∼mlearn/MLRepository.html

Cutting-Plane Training of Structural SVMs 27

Multi-Class HMM CFG

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1000 10000 100000 1e+06

C
P

U
-S

ec
on

ds

Number of Training Examples

n-slack
1-slack

1-slack (cache)
O(x)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000

C
P

U
-S

ec
on

ds

Number of Training Examples

n-slack
1-slack

1-slack (cache)
O(x)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

C
P

U
-S

ec
on

ds

Number of Training Examples

n-slack
1-slack

1-slack (cache)
O(x)

Fig. 1 Training times for multi-class classification (left) HMM part-of-speech tagging (middle)
and CFG parsing (right) as a function of n for the n-slack algorithm, the 1-slack algorithm, and the
1-slack algorithm with caching.

1-Slack Algorithm 1-Slack Algorithm with Caching

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000 1e+06

C
P

U
-S

ec
on

ds

Number of Training Examples

Multi-Class
HMM
CFG
O(x)

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000 1e+06

C
P

U
-S

ec
on

ds

Number of Training Examples

Multi-Class
HMM
CFG
O(x)

Fig. 2 Training times as a function of n using the optimal value of C at each training set size for
the the 1-slack algorithm (left) and the 1-slack algorithm with caching (right).

The n-slack algorithm scales super-linearly for all problems, but so does the
1-slack algorithm for CFG parsing. This can be explained as follows. Since the
grammar is constructed from all rules observed in the training data, the number
of grammar rules grows with the number of training examples. Even from the
second-largest to the largest training set, the number of rules in the grammar still
grows by almost 70% (3550 rules vs. 5182 rules). This has two effects. First, the
separation oracle becomes slower, since its time scales with the number of rules
in the grammar. In particular, the time the CFG parser takes to compute a sin-
gle argmax increases more than six-fold from the smallest to the largest training
set. Second, additional rules (in particular unary rules) introduce additional fea-
tures and allow the construction of larger and larger “wrong” trees ȳ, which means
that R2 = maxi,ȳ ||Ψ (xi,yi)−Ψ(xi, ȳ)||2 is not constant but grows. Indeed, Figure 3
shows that — consistent with Theorem 5 — the number of iterations of the 1-slack

28 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

1-Slack Algorithm 1-Slack Algorithm with Caching

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1e+06

Ite
ra

tio
ns

Number of Training Examples

Multi-Class
HMM
CFG

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1e+06

Ite
ra

tio
ns

Number of Training Examples

Multi-Class
HMM
CFG

Fig. 3 Number of iterations as a function of n for the the 1-slack algorithm (left) and the 1-slack
algorithm with caching (right).

Multi-Class HMM CFG

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1000 10000 100000 1e+06

S
up

po
rt

 V
ec

to
rs

Number of Training Examples

n-slack
1-slack

1-slack (cache)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000

S
up

po
rt

 V
ec

to
rs

Number of Training Examples

n-slack
1-slack

1-slack (cache)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000

S
up

po
rt

 V
ec

to
rs

Number of Training Examples

n-slack
1-slack

1-slack (cache)

Fig. 4 Number of support vectors for multi-class classification (left) HMM part-of-speech tagging
(middle) and CFG parsing (right) as a function of n for the n-slack algorithm, the 1-slack algorithm,
and the 1-slack algorithm with caching.

algorithm is roughly constant for multi-class classification and the HMM 7, while it
grows slowly for CFG parsing.

Finally, note that in Figure 3 the difference in the number of iterations of the algo-
rithm without caching (left) and with caching (right) is small. Despite the fact that
the constraint from the cache is typically not the overall most violated constraint,
but only a sufficiently violated constraint, both versions of the algorithm appear to
make similar progress in each iteration.

7 Note that the HMM always considers all possible rules in the regular language, so that there is
no growth in the number of rules once all symbols are added.

Cutting-Plane Training of Structural SVMs 29

Multi-Class HMM CFG

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1000 10000 100000 1e+06

C
al

ls
 to

 S
ep

ar
at

io
n

O
ra

cl
e

Number of Training Examples

n-slack
1-slack

1-slack (cache)
O(x)

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 100 1000 10000 100000

C
al

ls
 to

 S
ep

ar
at

io
n

O
ra

cl
e

Number of Training Examples

n-slack
1-slack

1-slack (cache)
O(x)

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 10 100 1000 10000

C
al

ls
 to

 S
ep

ar
at

io
n

O
ra

cl
e

Number of Training Examples

n-slack
1-slack

1-slack (cache)
O(x)

Fig. 5 Number of calls to the separation oracle for multi-class classification (left) HMM part-of-
speech tagging (middle) and CFG parsing (right) as a function of n for the n-slack algorithm, the
1-slack algorithm, and the 1-slack algorithm with caching.

5.5 What is the Size of the Working Set?

As already noted above, the size of the working set and its scaling has a substantial
influence on the overall efficiency of the algorithm. In particular, large (and grow-
ing) working sets will make it expensive to solve the quadratic programs. While
the number of iterations is an upper bound on the working set size for the 1-slack
algorithm, the number of support vectors shown in Figure 4 gives a much better
idea of its size, since we are removing inactive constraints from the working set.
For the 1-slack algorithm, Figure 4 shows that the number of support vectors does
not systematically grow with n for any of the problems, making it easy to solve
the working set QPs even for large datasets. This is very much in contrast to the n-
slack algorithm, where the growing number of support vectors makes each iteration
increasingly costly, and is starting to push the limits of what can be kept in main
memory.

5.6 How often is the Separation Oracle Called?

Next to solving the working set QPs in each iteration, computing the separation ora-
cle is the other major expense in each iteration. We now investigate how the number
of calls to the separation oracle scales with n, and how this is influenced by caching.
Figure 5 shows that for all algorithms the number of calls scales linearly with n for
the multi-class problem and the HMM. It is slightly super-linear for CFG parsing
due to the increasing number of interations as discussed above. For all problems and
training set sizes, the 1-slack algorithm with caching requires the fewest calls.

The size of the cache has a surprisingly little influence on the reduction of calls to
the separation oracle. Figure 6 shows that a cache of size f = 5 already provides all

30 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

 100000

 1e+06

 1e+07

 1e+08

 1e+09

0 2 5 10 20

C
al

ls
 to

 S
ep

ar
at

io
n

O
ra

cl
e

Size of Cache

Multi-Class
HMM
CFG

Fig. 6 Number of calls to the separation oracle as a function of cache size for the the 1-slack
algorithm.

of the benefits, and that larger cache sizes do not further reduce the number of calls.
However, we conjecture that this might be an artifact of our simple least-recently-
used caching strategy, and that improved caching methods that selectively call the
separation oracle for only a well-chosen subset of the examples will provide further
benefits.

5.7 Are the Solutions Different?

Since the stopping criteria are different in the 1-slack and the n-slack algorithm, it
remains to verify that they do indeed compute a solution of comparable effective-
ness. The plot in Figure 7 shows the dual objective value of the 1-slack solution
relative to the n-slack solution. A value below zero indicates that the n-slack solu-
tion has a better dual objective value, while a positive value shows by which fraction
the 1-slack objective is higher than the n-slack objective. For all values of C the so-
lutions are very close for the multi-class problem and for CFG parsing, and so are
their prediction performances on the test set (see table in Figure 7). This is not sur-
prising, since for both the n-slack and the 1-slack formulation the respective ε bound
the duality gap by Cε .

For the HMM, however, this Cε is a substantial fraction of the objective value
at the solution, especially for large values of C. Since the training data is almost
linearly separable for the HMM, Cε becomes a substantial part of the slack contri-
bution to the objective value. Furthermore, note the different scaling of the HMM
loss (i.e., number of misclassified tags in the sentence), which is roughly 5 times
smaller than the loss function on the other problems (i.e., 0 to 100 scale). So, an
ε = 0.1 on the HMM problem is comparable to an ε = 0.5 on the other problems.
Nevertheless, with a per-token test error rate of 3.29% for the 1-slack solution, the

Cutting-Plane Training of Structural SVMs 31

-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 100 1000 10000 100000 1e+06 1e+07

(O
bj

_1
 -

 O
bj

_n
)/

O
bj

_n

C

Multi-Class
HMM
CFG

Task Measure 1-slack n-slack
MultiC Accuracy 72.33 72.35
HMM Token Accuracy 96.71 96.69
CFG Bracket F1 70.22 70.09

Fig. 7 Relative difference in dual objective value of the solutions found by the 1-slack algorithm
and by the n-slack algorithm as a function of C at the maximum training set size (left), and test-set
prediction performance for the optimal value of C (right).

 100

 1000

 10000

 100000

 0.01 0.1 1 10

Ite
ra

tio
ns

Epsilon

Multi-Class
HMM
CFG

O(1/eps)

 10000

 100000

 1e+06

 1e+07

 0.01 0.1 1 10

C
al

ls
 to

 S
ep

ar
at

io
n

O
ra

cl
e

Epsilon

Multi-Class
HMM
CFG

Fig. 8 Number of iterations for the 1-slack algorithm (left) and number of calls to the separation
oracle for the 1-slack algorithm with caching (right) as a function of ε at the maximum training set
size.

prediction accuracy is even slightly better than the 3.31% error rate of the n-slack
solution.

5.8 How does the 1-Slack Algorithm Scale with ε?

While the scaling with n is the most important criterion from a practical perspective,
it is also interesting to look at the scaling with ε . Theorem 5 shows that the number
of iterations (and therefore the number of calls to the separation oracle) scales O(1

ε)
in the worst cast. Figure 8, however, shows that the scaling is much better in practice.
In particular, the number of calls to the separation oracle is largely independent of

32 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

 1

 10

 100

 1000

 10000

 100000

 1e+06

 100 1000 10000 100000 1e+06 1e+07 1e+08

Ite
ra

tio
ns

C

Multi-Class
HMM
CFG
O(C)

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07 1e+08

C
al

ls
 to

 S
ep

ar
at

io
n

O
ra

cl
e

C

Multi-Class
HMM
CFG

Fig. 9 Number of iterations for the 1-slack algorithm (left) and number of calls to the separation
oracle for the 1-slack algorithm with caching (right) as a function of C at the maximum training
set size.

ε and remains constant when caching is used. It seems like the additional iterations
can be done almost entirely from the cache.

5.9 How does the 1-Slack Algorithm Scale with C?

With increasing training set size n, the optimal value of C will typically change
(some theoretical results suggest an increase on the order of

√
n). In practice, find-

ing the optimal value of C typically requires training for a large range of C values as
part of a cross-validation experiment. It is therefore interesting to know how the al-
gorithm scales with C. While Theorem 5 bounds the number of iteration with O(C),
Figure 9 shows that the actual scaling is again much better. The number of iterations
increases slower than Ω(C) on all problems. Furthermore, as already observed for
ε above, the additional iterations are almost entirely based on the cache, so that C
has hardly any influence on the number of calls to the separation oracle.

6 Conclusions

We presented a cutting-plane algorithm for training structural SVMs. Unlike ex-
isting cutting-plane methods for this problems, the number of constraints that are
generated does not depend on the number of training examples n, but only on C and
the desired precision ε . Empirically, the new algorithm is substantially faster than
existing methods, in particular decomposition methods like SMO and SVM-light,
and it includes the training algorithm of Joachims (2006) for linear binary classifica-
tion SVMs as a special case. An implementation of the algorithm is available online

Cutting-Plane Training of Structural SVMs 33

with instances for multi-class classification, HMM sequence tagging, CFG parsing,
and binary classification.

Acknowledgements We thank Evan Herbst for implementing a prototype of the HMM instance
of SVMstruct , which was used in some of our preliminary experiments. This work was supported in
part through the grant NSF IIS-0713483 from the National Science Foundation and through a gift
from Yahoo!.

References

Altun Y, Tsochantaridis I, Hofmann T (2003) Hidden Markov support vector ma-
chines. In: International Conference on Machine Learning (ICML), pp 3–10

Anguelov D, Taskar B, Chatalbashev V, Koller D, Gupta D, Heitz G, Ng AY (2005)
Discriminative learning of Markov random fields for segmentation of 3D scan
data. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
IEEE Computer Society, pp 169–176

Bartlett P, Collins M, Taskar B, McAllester D (2004) Exponentiated algorithms for
large-margin structured classification. In: Advances in Neural Information Pro-
cessing Systems (NIPS), pp 305–312

Caruana R, Joachims T, Backstrom L (2004) KDDCup 2004: Results and analysis.
ACM SIGKDD Newsletter 6(2):95–108

Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. Software
available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm

Collins M (2002) Discriminative training methods for hidden Markov models: The-
ory and experiments with perceptron algorithms. In: Empirical Methods in Natu-
ral Language Processing (EMNLP), pp 1–8

Collins M (2004) Parameter estimation for statistical parsing models: Theory and
practice of distribution-free methods. In: New Developments in Parsing Technol-
ogy, Kluwer, (paper accompanied invited talk at IWPT 2001)

Collins M, Duffy N (2002) New ranking algorithms for parsing and tagging: Ker-
nels over discrete structures, and the voted perceptron. In: Annual Meeting of the
Association for Computational Linguistics (ACL), pp 263–270

Collobert R, Bengio S (2001) SVMTorch: Support vector machines for large-scale
regression problems. Journal of Machine Learning Research (JMLR) 1:143–160

Cortes C, Vapnik VN (1995) Support–vector networks. Machine Learning 20:273–
297

Crammer K, Singer Y (2001) On the algorithmic implementation of multiclass
kernel-based vector machines. Journal of Machine Learning Research (JMLR)
2:265–292

Crammer K, Singer Y (2003) Ultraconservative online algorithms for multiclass
problems. Journal of Machine Learning Research (JMLR) 3:951–991

Ferris M, Munson T (2003) Interior-point methods for massive support vector ma-
chines. SIAM Journal of Optimization 13(3):783–804

34 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

Fukumizu K, Bach F, Jordan M (2004) Dimensionality reduction for supervised
learning with reproducing kernel Hilbert spaces. Journal of Machine Learning
Research (JMLR) 5:73–99

Fung G, Mangasarian O (2001) Proximal support vector classifiers. In: ACM Con-
ference on Knowledge Discovery and Data Mining (KDD), pp 77–86

Globerson A, Koo TY, Carreras X, Collins M (2007) Exponentiated gradient algo-
rithm for log-linear structured prediction. In: International Conference on Ma-
chine Learning (ICML), pp 305–312

Joachims T (1999) Making large-scale SVM learning practical. In: Schölkopf B,
Burges C, Smola A (eds) Advances in Kernel Methods - Support Vector Learning,
MIT Press, Cambridge, MA, chap 11, pp 169–184

Joachims T (2003) Learning to align sequences: A maximum-margin approach, on-
line manuscript

Joachims T (2005) A support vector method for multivariate performance measures.
In: International Conference on Machine Learning (ICML), pp 377–384

Joachims T (2006) Training linear SVMs in linear time. In: ACM SIGKDD In-
ternational Conference On Knowledge Discovery and Data Mining (KDD), pp
217–226

Johnson M (1998) PCFG models of linguistic tree representations. Computational
Linguistics 24(4):613–632

Keerthi S, DeCoste D (2005) A modified finite Newton method for fast solution of
large scale linear SVMs. Journal of Machine Learning Research (JMLR) 6:341–
361

Keerthi S, Chapelle O, DeCoste D (2006) Building support vector machines with
reduced classifier complexity. Journal of Machine Learning Research (JMLR)
7:1493–1515

Kivinen J, Warmuth MK (1997) Exponentiated gradient versus gradient descent for
linear predictors. Information and Computation 132(1):1–63

Lafferty J, McCallum A, Pereira F (2001) Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: International Conference
on Machine Learning (ICML)

Lewis D, Yang Y, Rose T, Li F (2004) Rcv1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research (JMLR) 5:361–
397

Mangasarian O, Musicant D (2001) Lagrangian support vector machines. Journal of
Machine Learning Research (JMLR) 1:161–177

Marcus M, Santorini B, Marcinkiewicz MA (1993) Building a large annotated cor-
pus of English: The Penn Treebank. Computational Linguistics 19(2):313–330

McDonald R, Crammer K, Pereira F (2005) Online large-margin training of depen-
dency parsers. In: Annual Meeting of the Association for Computational Linguis-
tics (ACL), pp 91–98

Platt J (1999) Fast training of support vector machines using sequential minimal op-
timization. In: Schölkopf B, Burges C, Smola A (eds) Advances in Kernel Meth-
ods - Support Vector Learning, MIT-Press, chap 12

Cutting-Plane Training of Structural SVMs 35

Ratliff ND, Bagnell JA, Zinkevich MA (2007) (Online) subgradient methods for
structured prediction. In: Conference on Artificial Intelligence and Statistics
(AISTATS)

Shalev-Shwartz S, Singer Y, Srebro N (2007) PEGASOS: Primal Estimated sub-
GrAdient SOlver for SVM. In: International Conference on Machine Learning
(ICML), ACM, pp 807–814

Smola A, Schölkopf B (2000) Sparse greedy matrix approximation for machine
learning. In: International Conference on Machine Learning, pp 911–918

Taskar B, Guestrin C, Koller D (2003) Maximum-margin Markov networks. In:
Advances in Neural Information Processing Systems (NIPS)

Taskar B, Klein D, Collins M, Koller D, Manning C (2004) Max-margin parsing.
In: Empirical Methods in Natural Language Processing (EMNLP)

Taskar B, Lacoste-Julien S, Jordan MI (2005) Structured prediction via the extra-
gradient method. In: Advances in Neural Information Processing Systems (NIPS)

Teo CH, Smola A, Vishwanathan SV, Le QV (2007) A scalable modular convex
solver for regularized risk minimization. In: ACM Conference on Knowledge
Discovery and Data Mining (KDD), pp 727–736

Tsochantaridis I, Hofmann T, Joachims T, Altun Y (2004) Support vector machine
learning for interdependent and structured output spaces. In: International Con-
ference on Machine Learning (ICML), pp 104–112

Tsochantaridis I, Joachims T, Hofmann T, Altun Y (2005) Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research (JMLR) 6:1453–1484

Vapnik V (1998) Statistical Learning Theory. Wiley, Chichester, GB
Vishwanathan SVN, Schraudolph NN, Schmidt MW, Murphy KP (2006) Acceler-

ated training of conditional random fields with stochastic gradient methods. In:
International Conference on Machine Learning (ICML), pp 969–976

Yu CN, Joachims T, Elber R, Pillardy J (2007) Support vector training of protein
alignment models. In: Proceeding of the International Conference on Research in
Computational Molecular Biology (RECOMB), pp 253–267

Yue Y, Finley T, Radlinski F, Joachims T (2007) A support vector method for op-
timizing average precision. In: ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR), pp 271–278

Appendix

Lemma 1.

max
ααα≥0

D(ααα) = ∑
ȳ∈Y n

Δ(ȳ)αȳ− 1
2 ∑

ȳ∈Y n
∑

ȳ′∈Y n

αȳαȳ′HMR(ȳ, ȳ′) s.t. ∑
ȳ∈Y n

αȳ = C

and the Wolfe-Dual of the 1-slack optimization problem OP5 for slack-rescaling is

36 Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu

max
ααα≥0

D(ααα) = ∑
ȳ∈Y n

Δ(ȳ)αȳ− 1
2 ∑

ȳ∈Y n
∑

ȳ′∈Y n

αȳαȳ′HSR(ȳ, ȳ′) s.t. ∑
ȳ∈Y n

αȳ = C

Proof. The Lagrangian of OP4 is

L(www,ξ,ααα) =
1
2

wwwTwww+Cξ +∑
ȳ∈Y n

αȳ

[
1
n

n

∑
i=1

Δ(yi, ȳi)−ξ−1
n

wwwT
n

∑
i=1

[Ψ(xi,yi)−Ψ(xi, ȳi)]

]
.

Differentiating with respect to www and setting the derivative to zero gives

www = ∑
ȳ∈Y n

αȳ

(
1
n

n

∑
i=1

[Ψ(xi,yi)−Ψ(xi, ȳi)]

)
.

Similarly, differentiating with respect to ξ and setting the derivative to zero gives

∑
ȳ∈Y n

αȳ = C.

Plugging www into the Lagrangian with constraints on ααα we obtain the dual problem:

max − 1
2 ∑

ȳ∈Y n
∑

ȳ′∈Y n

αȳαȳ′
1
n2

[
n

∑
i=1

[Ψ(xi,yi)−Ψ(xi, ȳi)]

]T [n

∑
j=1

[Ψ(x j,y j)−Ψ(x j, ȳ
′
j)]

]

+ ∑
ȳ∈Y n

αȳ

(
1
n

n

∑
i=1

Δ(yi, ȳi)

)

s.t. ∑
ȳ∈Y n

αȳ = C and ∀ȳ ∈Y n : αȳ ≥ 0

The derivation of the dual of OP5 is analogous. ��
Lemma 2. For any unconstrained quadratic program

max
ααα∈ℜn

{Θ(ααα)}< ∞, Θ(ααα) = hhhT ααα− 1
2

αααT Hααα (32)

with positive semi-definite H, and derivative ∂Θ(ααα) = hhh−Hααα, a line search start-
ing at ααα along an ascent direction ηηη with maximum step-size C > 0 improves the
objective by at least

max
0≤β≤C

{Θ(ααα + β ηηη)}−Θ(ααα) ≥ 1
2

min

{
C,

∇Θ(ααα)T ηηη
ηηηT Hηηη

}
∇Θ(ααα)T ηηη . (33)

Proof. For any β and ηηη , it is easy to verify that

Θ(ααα + β ηηη)−Θ(ααα) = β
[

∇Θ(ααα)T ηηη− 1
2

β ηηηT Hηηη
]
. (34)

Cutting-Plane Training of Structural SVMs 37

Maximizing this expression with respect to an unconstrained β by setting the deriva-
tive to zero, the solution β ∗ is

β ∗ =
∇Θ(ααα)T ηηη

ηηηT Hηηη
. (35)

Note that ηηηT Hηηη is non-negative, since H is positive semi-definite. Furthermore,
ηηηT Hηηη �= 0, since otherwise ηηη being an ascent direction would contradict maxααα∈ℜn {Θ(ααα)}<
∞. Plugging β ∗ into (34) shows that

max
β∈ℜ
{Θ(ααα + β ηηη)}−Θ(ααα) =

1
2

(∇Θ(ααα)T ηηη)2

ηηηT Hηηη
. (36)

It remains to check whether the unconstrained solution β ∗ fulfills the constraints
0≤ β ∗ ≤C. Since ηηη is an ascent direction, β ∗ is always non-negative. But one needs
to consider the case that β ∗ > C, which happens when ∇Θ(ααα)T ηηη > CηηηT Hηηη . In
that case, the constrained optimum is at β = C due to convexity. Plugging C into
(34) shows that

max
β∈ℜ
{Θ(ααα + β ηηη)}−Θ(ααα) = C∇Θ(ααα)T ηηη− 1

2
C2ηηηT Hηηη (37)

≥ 1
2

C∇Θ(ααα)T ηηη . (38)

The inequality follow from C ≤ ∇Θ (ααα)T ηηη
ηηηT Hηηη . ��

