
Large-scale Validation of Counterfactual
Learning Methods: A Test-Bed

Damien Lefortier∗
Facebook & University of Amsterdam

dlefortier@fb.com

Adith Swaminathan
Cornell University, Ithaca, NY

adith@cs.cornell.edu

Xiaotao Gu
Tsinghua University, Beijing, China

gxt13@mails.tsinghua.edu.cn

Thorsten Joachims
Cornell University, Ithaca, NY

tj@cs.cornell.edu

Maarten de Rijke
University of Amsterdam

derijke@uva.nl

Abstract

The ability to perform effective off-policy learning would revolutionize the process of
building better interactive systems, such as search engines and recommendation systems
for e-commerce, computational advertising and news. Recent approaches for off-policy
evaluation and learning in these settings appear promising [1, 2]. With this paper, we
provide real-world data and a standardized test-bed to systematically investigate these
algorithms using data from display advertising. In particular, we consider the prob-
lem of filling a banner ad with an aggregate of multiple products the user may want
to purchase. This paper presents our test-bed, the sanity checks we ran to ensure its
validity, and shows results comparing state-of-the-art off-policy learning methods like
doubly robust optimization [3], POEM [2], and reductions to supervised learning us-
ing regression baselines. Our results show experimental evidence that recent off-policy
learning methods can improve upon state-of-the-art supervised learning techniques on
a large-scale real-world data set.

1 Introduction

Effective learning methods for optimizing policies based on logged user-interaction data have the potential
to revolutionize the process of building better interactive systems. Unlike the industry standard of using
expert judgments for training, such learning methods could directly optimize user-centric performance
measures, they would not require interactive experimental control like online algorithms, and they would
not be subject to the data bottlenecks and latency inherent in A/B testing.

Recent approaches for off-policy evaluation and learning in these settings appear promising [1, 2, 4], but
highlight the need for accurately logging propensities of the logged actions. With this paper, we provide
the first public dataset that contains accurately logged propensities for the problem of Batch Learning from
Bandit Feedback (BLBF). We use data from Criteo, a leader in the display advertising space. In addition to
∗This work was done while working at Criteo.

1

providing the data, we propose an evaluation methodology for running BLBF learning experiments and a
standardized test-bed that allows the research community to systematically investigate BLBF algorithms.

At a high level, a BLBF algorithm operates in the contextual bandit setting and solves the following
learning task:

1. Take as input: {π0, 〈xi, yi, δi〉ni=1}. π0 encodes the system from which the logs were collected,
x denotes the input to the system, y denotes the output predicted by the system and δ is a number
encoding the observed online metric for the output that was predicted;

2. Produce as output: π, a new policy that maps x 7→ y; and
3. Such that π will perform well (according to the metric δ) if it were deployed online.

We elaborate on the definitions of x, y, δ, π0 as logged in our dataset in the next section. Since past
research on BLBF was limited due to the availability of an appropriate dataset, we hope that our test-bed
will spur research on several aspects of BLBF and off-policy evaluation, including the following:

1. New training objectives, learning algorithms, and regularization mechanisms for BLBF;
2. Improved model selection procedures (analogous to cross-validation for supervised learning);
3. Effective and tractable policy classes π ∈ Π for the specified task x 7→ y; and
4. Algorithms that can scale to massive amounts of data.

The rest of this paper is organized as follows. In Section 2, we describe our standardized test-bed for
the evaluation of off-policy learning methods. Then, in Section 3, we describe a set of sanity checks
that we used on our dataset to ensure its validity and that can be applied generally when gathering data
for off-policy learning and evaluation. Finally, in Section 4, we show results comparing state-of-the-art
off-policy learning methods like doubly robust optimization [3], POEM [2], and reductions to supervised
learning using regression baselines. Our results show, for the first time, experimental evidence that recent
off-policy learning methods can improve upon state-of-the-art supervised learning techniques on a large-
scale real-world data set.

2 Dataset

We create our test-bed using data from display advertising, similar to the Kaggle challenge hosted by
Criteo in 2014 to compare CTR prediction algorithms.1 However, in this paper, we do not aim to build
clickthrough or conversion prediction models for bidding in real-time auctions [5, 6]. Instead, we consider
the problem of filling a banner ad with an aggregate of multiple products the user may want to purchase.
This part of the system takes place after the bidding agent has won the auction. In this context, each ad
has one of many banner types, which differ in the number of products they contain and in their layout as
shown in Figure 1. The task is to choose the products to display in the ad knowing the banner type in
order to maximize the number of clicks. This task is thus very different from the Kaggle challenge.

In this setting of choosing the best products to fill the banner ad, we can easily gather exploration data
where the placement of the products in the banner ad is randomized, without incurring a prohibitive cost
unlike in Web search for which such exploration is much more costly (see, e.g., [7, 8]). Our logging policy
uses randomization aggressively, while being very different from a uniformly random policy.

Each banner type corresponds to a different look & feel of the banner ad. Banner ads can differ in the
number of products, size, geometry (vertical, horizontal, . . .), background color and in the data shown

1https://www.kaggle.com/c/criteo-display-ad-challenge

2

https://www.kaggle.com/c/criteo-display-ad-challenge

Figure 1: Four examples of ads used in display advertising: a vertical ad, a grid, and two horizontal ads
(mock-ups).

(with or without a product description or a call to action); these we call the fixed attributes. Banner
types may also have dynamic aspects such as some form of pagination (multiple pages of products) or
an animation. Some examples are shown in Figure 1. Throughout the paper, we label positions in each
banner type from 1 to N from left to right and from top to bottom. Thus 1 is the top left position.

For each user impression, we denote a user context by c, the number of slots in the banner type by lc, and
the candidate pool of products p by Pc. Each context c and product p pair is described by features φ(c, p).
The input x to the system encodes c, Pc, {φ(c, p) : p ∈ Pc}. The logging policy π0 stochastically selects
products to construct a banner by first computing non-negative scores fp for all candidate products p ∈
Pc, and using a Plackett-Luce ranking model (i.e., sampling without replacement from the multinomial
distribution defined by the fp scores):

P (slot1 = p) =
fp∑

{p′∈Pc} fp′
P (slot2 = p′ | slot1 = p) =

fp′∑
{p†∈Pc∧p† 6=p} fp†

, etc. (1)

The propensity of a chosen banner ad 〈p1, p2, . . . 〉 is P (slot1 = p1) · P (slot2 = p2 | slot1 = p1) ·
With these propensities in hand, we can counterfactually evaluate any banner-filling policy in an unbiased
way using inverse propensity scoring [9].

The following was logged, committing to a single feature encoding φ(c, p) and a single π0 that produces
the scores f for the entire duration of data collection.

• Record the feature vector φ(c, p) for all products in the candidate set Pc;
• Record the selected products sampled from π0 via the Plackett-Luce model and its propensity;
• Record the click/no click and their location(s) in the banner.

The format of this data is:

example ${exID}: ${hashID} ${wasAdClicked} ${propensity} ${nbSlots} ${nbCandidates} ${displayFeat1}:${v 1} ...

${wasProduct1Clicked} exid:${exID} ${productFeat1 1}:${v1 1} ...

3

...

${wasProductMClicked} exid:${exID} ${productFeatM 1}:${vM 1} ...

Each impression is represented by M + 1 lines where M is the cardinality of Pc and the first line is
a header containing summary information. Note that the first ${nbSlots} candidates correspond to the
displayed products ordered by position (consequently, ${wasProductMClicked} information for all other
candidates is irrelevant). There are 35 features. Display features are context features or banner type fea-
tures, which are constant for all candidate products in a given impression. Each unique quadruplet of
feature IDs 〈1, 2, 3, 5〉 correspond to a unique banner type. Product features are based on the similarity
and/or complementarity of the candidate products with historical products seen by the user on the adver-
tiser’s website. We also included interaction terms between some of these features directly in the dataset
to limit the amount of feature engineering required to get a good policy. Features 1 and 2 are numerical,
while all other features are categorical. Some categorical features are multi-valued, which means that they
can take more than one value for the same product (order does not matter). Note that the example ID is
increasing with time, allowing temporal slices for evaluation [10], although we do not enforce this for our
test-bed. Importantly, non-clicked examples were sub-sampled aggressively to reduce the dataset size and
we kept only a random 10% sub-sample of them. So, one needs to account for this during learning and
evaluation – the evaluator we provide with the test-bed accounts for this sub-sampling.

The result is a dataset of over 103 million ad impressions. In this dataset, we have:

• 8500+ banner types with the top 10 banner types representing 30% of the total number of ad
impressions, the top 50 about 65%, and the top 100 about 80%.

• The number of displayed products is between 1 and 6 included.
• There are over 21M impressions for 1-slot banners, over 35M for 2-slot, almost 23M for 3-slot,

7M for 4-slot, 3M for 5-slot and over 14M for 6-slot banners.
• The size of the candidate pool Pc is about 10 times (upper bound) larger than the number of

products to display in the ad.

This dataset is hosted on Amazon AWS (35GB gzipped / 256GB raw). Details for accessing and process-
ing the data are available at http://www.cs.cornell.edu/˜adith/Criteo/.

3 Sanity Checks

The work-horse of counterfactual evaluation is Inverse Propensity Scoring (IPS) [11, 9]. IPS requires
accurate propensities, and, to a crude approximation, produces estimates with variance that scales roughly
with the range of the inverse propensities. In Table 1, we report the number of impressions and the average
and largest inverse propensities, partitioned by ${nbSlots}. When constructing confidence intervals for
importance weighted estimates like IPS, we often appeal to asymptotic normality of large sample averages
[12]. However, if the inverse propensities are very large relative to the number of samples (as we can see
for ${nbSlots} ≥ 4), the asymptotic normality assumption will probably be violated.

There are some simple statistical tests that can be run to detect some issues with inaccurately logged
propensities [13]. These arithmetic and harmonic tests, however, require that the candidate actions avail-
able for each impression are fixed a priori. In our scenario, we have a context-dependent candidate set
that precludes running these tests, so we propose a more general class of diagnostics that can detect some
systematic biases and issues in propensity-logged datasets.

Some notation: xi
iid∼ Pr(X); yi ∼ π0(Y | xi); δi ∼ Pr(∆ | xi, yi). The propensity for the

logging policy π0 to take the logged action yi in context xi is denoted qi ≡ π0(yi | xi). If the propensities

4

http://www.cs.cornell.edu/~adith/Criteo/

Table 1: Number of impressions and propensity statistics computed for slices of traffic with k-slot
banners, 1 ≤ k ≤ 6. Estimated sample size (N̂) corrects for 10% sub-sampling of unclicked impressions.

#Slots 1 2 3 4 5 6
#Impressions 2.13e+ 07 3.55e+07 2.27e+07 6.92e+06 2.95e+06 1.40e+07

N̂ 2.03e+ 08 3.39e+08 2.15e+08 6.14e+07 2.65e+07 1.30e+08
Avg(InvPropensity) 11.96 3.29e+02 1.87e+04 2.29e+06 2.62e+07 3.51e+09
Max(InvPropensity) 5.36e+05 3.38e+08 3.23e+10 9.78e+12 2.03e+12 2.34e+15

are correctly logged, then the expected importance weight should be 1 for any new banner-filling policy
π(Y | x). Formally, we have the following:

Ĉ(π) =
1

N

N∑
i=1

π(yi | xi)
qi

' 1. (2)

The IPS estimate for a new policy is simply:

R̂(π) =
1

N

N∑
i=1

δi
π(yi | xi)

qi
. (3)

These equations are valid when π0 has full support, as our logging system does: π0(y | x) > 0 ∀x, y.
The self-normalized estimator [14, 4] is:

R̂snips(π) =
R̂(π)

Ĉ(π)
. (4)

Remember that we sub-sampled non-clicked impressions. Sub-sampling is indicated by the binary random
variable oi:

oi ∼ Pr(O = 1 | δ) =

{
0.1 if δ = 0,

1 otherwise.
(5)

The IPS estimate and the diagnostic above are not computable in our case since they require all data-
points before sub-sampling. So, we use the following straightforward modification to use only our N
sub-sampled data-points instead.

First, we estimate the number of data-points before sub-sampling N̂ only using samples where oi = 1:

N̂ =

N∑
i=1

1{oi = 1}
Pr(O = 1 | δi)

= #{δ = 1}+ 10#{δ = 0}. (6)

N̂ is an unbiased estimate of N =
∑N
i=1 1 since E(xi,yi,δi)Eoi∼Pr(O|δi)

[
1{oi=1}

Pr(O=1|δi)

]
= E(xi,yi,δi)1 = 1.

Next, consider estimating R(π) = E(xi,yi,δi)δi
π(yi|xi)

qi
as:

R̂(π) =
1

N̂

N∑
i=1

δi
π(yi | xi)

qi

1{oi = 1}
Pr(O = 1 | δi)

. (7)

5

Again, E(xi,yi,δi)Eoi∼Pr(O|δi)

[
δi
π(yi|xi)

qi

1{oi=1}
Pr(O=1|δi)

]
= E(xi,yi,δi)δi

π(yi|xi)
qi

. Hence, the sum in the nu-

merator of R̂(π) is, in expectation, NR(π), while the normalizing constant N̂ is, in expectation, N .
Ratios of expectations are not equal to the expectation of a ratio, so we expect a small bias in this estimate
but it is easy to show that this estimate is asymptotically consistent.

Finally consider estimating C(π) = E(xi,yi)
π(yi|xi)

qi
= 1 as:

Ĉ(π) =
1

N̂

N∑
i=1

π(yi | xi)
qi

1{oi = 1}
Pr(O = 1 | δi)

. (8)

Again, E(xi,yi,δi)Eoi∼Pr(O|δi)

[
π(yi|xi)

qi

1{oi=1}
Pr(O=1|δi)

]
= E(xi,yi,δi)

π(yi|xi)
qi

= 1. The sum in the numerator

of Ĉ(π) is, in expectation, N as is the denominator. Again, we expect this estimate to have a small bias
but to remain asymptotically consistent. The computable variant of the self-normalized IPS estimator
simply uses the computable R̂(π) and Ĉ(π) in its definition: R̂snips(π) = R̂(π)/Ĉ(π).

We use a family of new policies πε, parametrized by 0 ≤ ε ≤ 1 to diagnose Ĉ(π) and the expected
behavior of IPS estimates R̂(π). The policy πε behaves like a uniformly random ranking policy with
probability ε, and with probability 1 − ε, behaves like the logging policy. Formally, for an impression
with context xi, |Y| possible actions (e.g., rankings of candidate products), and logged action yi, the
probability for choosing yi under the new policy πε is:

πε(yi | xi) = ε
1

|Y|
+ (1− ε)π0(yi | xi). (9)

As we vary ε away from 0, the new policy looks more different than the logging policy π0 on the logged
impressions. In Tables 2,3,4 we report Ĉ(πε) and a 99% confidence interval assuming asymptotic nor-
mality, for different choices of ε. We also report the IPS-estimated clickthrough rates for these policies
R̂(πε), their standard error (99% CI), and finally, their self-normalized IPS-estimates [14, 4].

As we pick policies that differ from the logging policy, we see that the estimated variance of the IPS
estimates (as reflected in their approximate 99% confidence intervals) increases. Moreover, the control
variate Ĉ(πε) is systematically under-estimated. This should caution us to not rely on a single point-
estimate (e.g. only IPS or SNIPS). SNIPS can often provide a better bias-variance trade-off in these
estimates, but can fail catastrophically when the variance is very high due to systematic under-estimation
of Ĉ(π). Moreover, in these very high-variance situations (e.g. when k ≥ 3 and ε ≥ 2−2), the constructed
confidence intervals are not reliable — C(πε) clearly does not lie in the computed intervals. Based on
these sanity checks, we focus the evaluation set-up in Section 4 on the 1-slot case.

4 Benchmarking Learning Algorithms

4.1 Evaluation

Estimates based on importance sampling have considerable variance when the number of slots increases.
We would thus need tens of millions of impressions to estimate the CTR of slot-filling policies with high
precision. To limit the risks of people “over-fitting to the variance” by querying far away from our logging
policy, we propose the following estimates for any policy:

• Report the inverse propensity scoring (IPS) [9] R̂(π) as well as the self-normalized (SN) estimate
[4] for the new policy R̂(π)/Ĉ(π) (self-normalized, so that learnt policies cannot cheat by not
having their importance weights sum to 1);

6

Table 2: Diagnostics and IPS-estimated clickthrough rates for different policies πε evaluated on slices of
traffic with k-slot banners, k ∈ {1, 2}. ε interpolates between the logging policy (ε = 0) and the uniform

random policy (ε = 1). Error bars are 99% confidence intervals under a normal distribution.

#Slots 1 2

ε Ĉ(πε) R̂(πε)× 104 R̂(πε)×104

Ĉ(πε)
Ĉ(πε) R̂(πε)× 104 R̂(πε)×104

Ĉ(πε)

0 1.000±0.000 53.604±0.129 53.604 1.000±0.000 52.554±0.099 52.554
2−10 1.000±0.000 53.598±0.129 53.599 1.000±0.000 52.541±0.099 52.545
2−9 1.000±0.000 53.593±0.130 53.595 1.000±0.000 52.529±0.101 52.536
2−8 1.000±0.000 53.582±0.131 53.585 1.000±0.000 52.503±0.107 52.517
2−7 1.000±0.000 53.560±0.138 53.567 0.999±0.000 52.453±0.129 52.481
2−6 1.000±0.000 53.516±0.163 53.531 0.999±0.001 52.351±0.193 52.407
2−5 0.999±0.000 53.428±0.236 53.457 0.998±0.002 52.148±0.346 52.260
2−4 0.999±0.001 53.251±0.416 53.311 0.996±0.003 51.742±0.671 51.965
2−3 0.998±0.001 52.899±0.802 53.017 0.991±0.006 50.929±1.331 51.370
2−2 0.996±0.003 52.194±1.589 52.428 0.983±0.012 49.305±2.657 50.166
2−1 0.991±0.006 50.785±3.171 51.241 0.966±0.024 46.056±5.312 47.693
1 0.982±0.012 47.966±6.338 48.836 0.931±0.048 39.557±10.623 42.473

Table 3: Diagnostics for different policies πε evaluated on slices of traffic with k-slot banners,
k ∈ {3, 4}. Error bars are 99% confidence intervals under a normal distribution.

#Slots 3 4

ε Ĉ(πε) R̂(πε)× 104 R̂(πε)×104

Ĉ(πε)
Ĉ(πε) R̂(πε)× 104 R̂(πε)×104

Ĉ(πε)

0 1.000±0.000 64.298±0.137 64.298 1.000±0.000 141.114±0.366 141.114
2−10 1.000±0.000 64.296±0.148 64.305 1.000±0.001 141.065±0.366 141.082
2−9 1.000±0.000 64.294±0.179 64.312 1.000±0.001 141.015±0.366 141.049
2−8 0.999±0.000 64.291±0.268 64.326 1.000±0.002 140.916±0.368 140.984
2−7 0.999±0.001 64.284±0.480 64.354 0.999±0.003 140.717±0.378 140.853
2−6 0.998±0.001 64.269±0.930 64.410 0.998±0.006 140.320±0.413 140.590
2−5 0.996±0.003 64.240±1.844 64.523 0.996±0.012 139.526±0.534 140.065
2−4 0.991±0.006 64.182±3.681 64.750 0.992±0.024 137.937±0.863 139.007
2−3 0.982±0.011 64.066±7.359 65.211 0.985±0.049 134.761±1.610 136.867
2−2 0.965±0.023 63.834±14.716 66.157 0.969±0.097 128.407±3.161 132.484
2−1 0.930±0.045 63.370±29.430 68.156 0.938±0.194 115.700±6.295 123.288
1 0.860±0.090 62.443±58.860 72.643 0.877±0.389 90.285±12.577 102.960

• Compute the standard error of the IPS estimate (appealing to asymptotic normality), and report
this error as an “approximate confidence interval”.

This is provided in our evaluation software alongside the dataset online. In this way, learning algorithms
must reason about bias/variance explicitly to reliably achieve better estimated CTR.

7

http://www.cs.cornell.edu/~adith/Criteo/

Table 4: Diagnostics for different policies πε evaluated on slices of traffic with k-slot banners,
k ∈ {5, 6}. Error bars are 99% confidence intervals under a normal distribution.

#Slots 5 6

ε Ĉ(πε) R̂(πε)× 104 R̂(πε)×104

Ĉ(πε)
Ĉ(πε) R̂(πε)× 104 R̂(πε)×104

Ĉ(πε)

0 1.000±0.000 125.965±0.530 125.965 1.000±0.000 90.620±0.206 90.620
2−10 0.999±0.000 125.899±0.532 125.976 1.000±0.000 90.579±0.207 90.622
2−9 0.999±0.001 125.833±0.538 125.988 0.999±0.000 90.537±0.210 90.625
2−8 0.998±0.001 125.702±0.563 126.011 0.998±0.000 90.454±0.222 90.629
2−7 0.995±0.001 125.439±0.653 126.057 0.996±0.001 90.289±0.264 90.638
2−6 0.990±0.002 124.913±0.931 126.149 0.992±0.001 89.957±0.389 90.657
2−5 0.980±0.004 123.861±1.624 126.337 0.985±0.002 89.293±0.691 90.694
2−4 0.961±0.007 121.756±3.119 126.725 0.969±0.004 87.967±1.336 90.769
2−3 0.922±0.014 117.548±6.172 127.549 0.938±0.008 85.313±2.649 90.928
2−2 0.843±0.029 109.131±12.314 129.428 0.877±0.017 80.006±5.287 91.279
2−1 0.686±0.057 92.298±24.613 134.475 0.753±0.033 69.392±10.568 92.154
1 0.373±0.115 58.631±49.221 157.307 0.506±0.066 48.164±21.135 95.185

4.2 Methods

Consider a 1-slot banner filling task defined using our dataset. This 21M slice of traffic can be modeled as
a logged contextual bandit problem with a small number of arms. This slice is further randomly divided
into a 33 − 33 − 33% train-validate-test split. The following methods are benchmarked in the code
accompanying this dataset release. All these methods use a linear policy class π ∈ Πlin to map x 7→ y
(i.e., score candidates using a linear scorer w ·φ(c, p)), but differ in their training objectives. Their hyper-
parameters are chosen to maximize R̂(π) on the validation set and their test-set estimates are reported in
Table 5.

1. Random: A policy that picks p ∈ Pc uniformly at random to display.
2. Regression: A reduction to supervised learning that predicts δ for every candidate action.

The number of training epochs (ranging from 1 . . . 40), regularization for Lasso (ranging from
10−8 . . . 10−4), and learning rate for SGD (0.1, 1, 10) are the hyper-parameters.

3. IPS: Directly optimizes R̂(π) evaluated on the training split. This implementation uses a re-
duction to weighted one-against-all multi-class classification as employed in [3]. The hyper-
parameters are the same as in the Regression approach.

4. DRO [3]: Combines the Regression method with IPS using the doubly robust estimator to per-
form policy optimization. Again uses a reduction to weighted one-against-all multi-class classi-
fication, and uses the same set of hyper-parameters.

5. POEM [2]: Directly trains a stochastic policy following the counterfactual risk minimization
principle, thus reasoning about differences in the variance of the IPS estimate R̂(π). Hyper-
parameters are variance regularization, L2 regularization, propensity clipping and number of
training epochs.

The results of the learning experiments are summarized in Table 5. For more details and the specifics of the
experiment setup, visit the dataset website. Differences in Random and π0 numbers compared to Table 2

8

http://www.cs.cornell.edu/~adith/Criteo/

Test set estimates
Approach R̂(πε)× 104 R̂(πε)× 104/Ĉ(πε) Ĉ(πε)

Random 44.676±2.112 45.446±0.001 0.983±0.021
π0 53.540±0.224 53.540±0.000 1.000±0.000
Regression 48.353±3.253 48.162±0.001 1.004±0.041
IPS 54.125±2.517 53.672±0.001 1.008±0.016
DRO 57.356±14.008 57.086±0.005 1.005±0.025
POEM 58.040±3.407 57.480±0.001 1.010±0.018

Table 5: Test set performance of policies learnt using different counterfactual learning baselines. Errors
bars are 99% confidence intervals under a normal distribution. Confidence interval for SNIPS is

constructed using the delta method [12].

are because they are computed on a 33% subset — we do expect their confidence intervals to overlap.
We see that the Regression approach, which loosely corresponds to predicting CTR for each candidate
using supervised machine learning, can be substantially improved using many recent off-policy learning
algorithms that effectively use the logged propensities. We also note that very limited hyper-parameter
tuning was performed for methods like POEM and DRO — for instance, POEM can conceivably be
improved by employing the doubly robust estimator. We leave such algorithm-tuning to future work.

5 Conclusions

In this paper, we have introduced a standardized test-bed to systematically investigate off-policy learning
algorithms using real-word data. We presented this test-bed, the sanity checks we ran to ensure its validity,
and showed results comparing state-of-the-art off-policy learning methods (doubly robust optimization
[3] and POEM [2]) to regression baselines on a 1-slot banner filling task. Our results show experimental
evidence that recent off-policy learning methods can improve upon state-of-the-art supervised learning
techniques on a large-scale real-world data set.

These results we presented are for the 1-slot banner filling tasks. There are several dimensions in setting
up challenging, interesting, relevant off-policy learning problems on the data collected for future work.

Size of the action space: Increase the size of the action space, i.e. of the number of slots in the banner.
Feedback granularity: We can use global feedback (was there a click somewhere in the banner), or per

item feedback (which item in the banner was clicked).
Contextualization: We can learn a separate model for each banner type or learn a contextualized model

across multiple banner types.

Acknowledgments

We thank Alexandre Gilotte and Thomas Nedelec at Criteo for their help in creating the dataset. This
work was funded in part through NSF Awards IIS-1247637, IIS-1615706, IIS-1513692.

References
[1] L. Bottou, J. Peters, J. Q. Candela, D. X. Charles, M. Chickering, E. Portugaly, D. Ray, P. Y. Simard,

and E. Snelson, “Counterfactual reasoning and learning systems: the example of computational
advertising.,” Journal of Machine Learning Research, pp. 3207–3260, 2013.

9

[2] A. Swaminathan and T. Joachims, “Batch learning from logged bandit feedback through counterfac-
tual risk minimization,” Journal of Machine Learning Research, pp. 1731–1755, 2015.

[3] M. Dudı́k, J. Langford, and L. Li, “Doubly robust policy evaluation and learning,” in ICML,
pp. 1097–1104, 2011.

[4] A. Swaminathan and T. Joachims, “The self-normalized estimator for counterfactual learning,” in
NIPS, pp. 3231–3239, 2015.

[5] O. Chapelle, E. Manavoglu, and R. Rosales, “Simple and scalable response prediction for display
advertising,” Transactions on Intelligent Systems and Technology, p. Article 61, 2014.

[6] F. Vasile, D. Lefortier, and O. Chapelle, “Cost-sensitive learning for utility optimization in online
advertising auctions,” arXiv preprint arXiv:1603.03713, 2016.

[7] A. Vorobev, D. Lefortier, G. Gusev, and P. Serdyukov, “Gathering additional feedback on search
results by multi-armed bandits with respect to production ranking,” in WWW, pp. 1177–1187, 2015.

[8] D. Lefortier, P. Serdyukov, and M. de Rijke, “Online exploration for detecting shifts in fresh intent,”
in CIKM, pp. 589–598, 2014.

[9] L. Li, W. Chu, J. Langford, and X. Wang, “Unbiased offline evaluation of contextual-bandit-based
news article recommendation algorithms,” in WSDM, pp. 297–306, 2011.

[10] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,
D. Golovin, et al., “Ad click prediction: a view from the trenches,” in KDD, pp. 1222–1230, 2013.

[11] P. R. Rosenbaum and D. B. Rubin, “The central role of the propensity score in observational studies
for causal effects,” Biometrika, pp. 41–55, 1983.

[12] A. B. Owen, Monte Carlo theory, methods and examples. 2013.
[13] L. Li, S. Chen, J. Kleban, and A. Gupta, “Counterfactual estimation and optimization of click metrics

in search engines: A case study,” in WWW, pp. 929–934, 2015.
[14] T. Hesterberg, “Weighted average importance sampling and defensive mixture distributions,” Tech-

nometrics, pp. 185–194, 1995.

10

	Introduction
	Dataset
	Sanity Checks
	Benchmarking Learning Algorithms
	Evaluation
	Methods

	Conclusions

