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Abstract

Most data for evaluating and training recom-
mender systems is subject to selection biases,
either through self-selection by the users or
through the actions of the recommendation sys-
tem itself. In this paper, we provide a principled
approach to handle selection biases by adapting
models and estimation techniques from causal in-
ference. The approach leads to unbiased perfor-
mance estimators despite biased data, and to a
matrix factorization method that provides sub-
stantially improved prediction performance on
real-world data. We theoretically and empirically
characterize the robustness of the approach, and
find that it is highly practical and scalable.

1. Introduction

Virtually all data for training recommender systems is sub-
ject to selection biases. For example, in a movie rec-
ommendation system users typically watch and rate those
movies that they like, and rarely rate movies that they
do not like (Pradel et al., 2012). Similarly, when an ad-
placement system recommends ads, it shows ads that it be-
lieves to be of interest to the user, but will less frequently
display other ads. Having observations be conditioned on
the effect we would like to optimize (e.g. the star rating, the
probability of a click, etc.) leads to data that is Missing Not
At Random (MNAR) (Little & Rubin, 2002). This creates
a widely-recognized challenge for evaluating recommender
systems (Marlin & Zemel, 2009; Myttenaere et al., 2014).

We develop an approach to evaluate and train recommender
systems that remedies selection biases in a principled, prac-
tical, and highly effective way. Viewing recommendation
from a causal inference perspective, we argue that exposing
a user to an item in a recommendation system is an inter-
vention analogous to exposing a patient to a treatment in a
medical study. In both cases, the goal is to accurately esti-
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mate the effect of new interventions (e.g. a new treatment
policy or a new set of recommendations) despite incom-
plete and biased data due to self-selection or experimenter-
bias. By connecting recommendation to causal inference
from experimental and observational data, we derive a prin-
cipled framework for unbiased evaluation and learning of
recommender systems under selection biases.

The main contribution of this paper is four-fold. First,
we show how estimating the quality of a recommendation
system can be approached with propensity-weighting tech-
niques commonly used in causal inference (Imbens & Ru-
bin, 2015), complete-cases analysis (Little & Rubin, 2002),
and other problems (Cortes et al., 2008; Bickel et al., 2009;
Sugiyama & Kawanabe, 2012). In particular, we derive
unbiased estimators for a wide range of performance mea-
sures (e.g. MSE, MAE, DCG). Second, with these estima-
tors in hand, we propose an Empirical Risk Minimization
(ERM) framework for learning recommendation systems
under selection bias, for which we derive generalization er-
ror bounds. Third, we use the ERM framework to derive a
matrix factorization method that can account for selection
bias while remaining conceptually simple and highly scal-
able. Fourth, we explore methods to estimate propensities
in observational settings where selection bias is due to self-
selection by the users, and we characterize the robustness
of the framework against mis-specified propensities.

Our conceptual and theoretical contributions are validated
in an extensive empirical evaluation. For the task of evalu-
ating recommender systems, we show that our performance
estimators can be orders-of-magnitude more accurate than
standard estimators commonly used in the past (Bell et al.,
2007). For the task of learning recommender systems, we
show that our new matrix factorization method substan-
tially outperforms methods that ignore selection bias, as
well as existing state-of-the-art methods that perform joint-
likelihood inference under MNAR data (Hernandez-Lobato
etal., 2014). This is especially promising given the concep-
tual simplicity and scalability of our approach compared to
joint-likelihood inference. We provide an implemention of
our method, as well as a new benchmark dataset, online'.

Thttps://www.cs.cornell.edu/~schnabts/mnar/
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2. Related Work

Past work that explicitly dealt with the MNAR nature of
recommendation data approached the problem as missing-
data imputation based on the joint likelihood of the miss-
ing data model and the rating model (Marlin et al., 2007,
Marlin & Zemel, 2009; Hernandez-Lobato et al., 2014).
This has led to sophisticated and highly complex meth-
ods. We take a fundamentally different approach that
treats both models separately, making our approach mod-
ular and scalable. Furthermore, our approach is robust to
mis-specification of the rating model, and we characterize
how the overall learning process degrades gracefully un-
der a mis-specified missing-data model. We empirically
compare against the state-of-the-art joint likelihood model
(Hernandez-Lobato et al., 2014) in this paper.

Related but different from the problem we consider is
recommendation from positive feedback alone (Hu et al.,
2008; Liang et al., 2016). Related to this setting are also
alternative approaches to learning with MNAR data (Steck,
2010; 2011; Lim et al., 2015), which aim to avoid the prob-
lem by considering performance measures less affected by
selection bias under mild assumptions. Of these works, the
approach of Steck (2011) is most closely related to ours,
since it defines a recall estimator that uses item popular-
ity as a proxy for propensity. Similar to our work, Steck
(2010; 2011) and Hu et al. (2008) also derive weighted ma-
trix factorization methods, but with weighting schemes that
are either heuristic or need to be tuned via cross validation.
In contrast, our weighted matrix factorization method en-
joys rigorous learning guarantees in an ERM framework.

Propensity-based approaches have been widely used in
causal inference from observational studies (Imbens & Ru-
bin, 2015), as well as in complete-case analysis for missing
data (Little & Rubin, 2002; Seaman & White, 2013) and in
survey sampling (Thompson, 2012). However, their use in
matrix completion is new to our knowledge. Weighting ap-
proaches are also widely used in domain adaptation and co-
variate shift, where data from one source is used to train for
a different problem (e.g., Huang et al., 2006; Bickel et al.,
2009; Sugiyama & Kawanabe, 2012). We will draw upon
this work, especially the learning theory of weighting ap-
proaches in (Cortes et al., 2008; 2010).

3. Unbiased Performance Estimation for
Recommendation

Consider a toy example adapted from Steck (2010) to il-
lustrate the disastrous effect that selection bias can have
on conventional evaluation using a test set of held-out rat-
ings. Denote with v € {1,...,U} the users and with
i € {1,...,I} the movies. Figure 1 shows the matrix of
true ratings Y € RY*! for our toy example, where a sub-
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Figure 1. Movie-Lovers toy example. Top row: true rating matrix
Y, propensity matrix P, observation indicator matrix O. Bottom
row: two rating prediction matrices Yl and Yz, and intervention
indicator matrix Ys.

set of users are “horror lovers” who rate all horror movies
5 and all romance movies 1. Similarly, there is a subset of
“romance lovers” who rate just the opposite way. How-
ever, both groups rate dramas as 3. The binary matrix
O € {0,1}Y>! in Figure 1 shows for which movies the
users provided their rating to the system, [0, ;, = 1] <
[Y,,; observed]. Our toy example shows a strong correla-
tion between liking and rating a movie, and the matrix P
describes the marginal probabilities P, ; = P(O,; = 1)
with which each rating is revealed. For this data, consider
the following two evaluation tasks.

3.1. Task 1: Estimating Rating Prediction Accuracy

For the first task, we want to evaluate how well a predicted
rating matrix Y reflects the true ratings in Y. Standard eval-
uation measures like Mean Absolute Error (MAE) or Mean
Squared Error (MSE) can be written as:

U I
1 N
u:l =1
for an appropriately chosen 4, ;(Y,Y).
MAE:  6,:(Y,Y) = |Yui — Vil , )
MSE:  30,,(Y,Y) = (Yo —Yui)? | 3)
Accuracy: 0u,i (Y, Y) = 1{Yu =Yyt . )

Since Y is only partially known, the conventional practice
is to estimate R(Y") using the average over only the ob-
served entries,

R - 1

Rnaive Y) = T N A~ 5u7, YY )
) = o=, 2

We call this the naive estimator, and its naivety leads to
a gross misjudgment for the Y; and Yg given in Figure 1.
Even though Y; is clearly better than Ys by any reasonable
measure of performance, mee (Y) will reliably claim
that 572 has better MAE than 571. This error is due to selec-
tion bias, since 1-star ratings are under-represented in the
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observed data and §,, ; (Y, Y) is correlated with Y,, ;. More
generally, under selection bias, Rnawe(YA) is not an unbi-
ased estimate of the true performance R(Y") (Steck, 2013):

Eo [Ruaie(V)] # R(Y) . ©)

Before we design an improved estimator to replace
Ryaive(Y), let’s turn to a related evaluation task.

3.2. Task 2: Estimating Recommendation Quality

Instead of evaluating the accuracy of predicted ratings, we
may want to more directly evaluate the quality of a particu-
lar recommendation. To this effect, let’s redefine Y to now
encode recommendations as a binary matrix analogous to
O, where [Y,; = 1] < [i is recommended to ], limited
to a budget of k recommendations per user. An example is
Vs in Figure 1. A reasonable way to measure the quality
of a recommendation is the Cumulative Gain (CG) that the
user derives from the recommended movies, which we de-
fine as the average star-rating of the recommended movies
in our toy example?. CG can again be written in the form
of Eq. (1) with

CG:  6,:(V,Y) = (I/k) Vi Yui . (7

However, unless users have watched all movies in 57, we
cannot compute CG directly via Eq. (1). Hence, we are
faced with the counterfactual question: how well would
our users have enjoyed themselves (in terms of CG), if they
had followed our recommendations Y instead of watching
the movies indicated in O? Note that rankings of recom-
mendations are similar to the set-based recommendation
described above, and measures like Discounted Cumula-
tive Gain (DCG), DCG@X, Precision at k (PREC@Xk), and
others (Aslam et al., 2006; Yilmaz et al., 2008) also fit in
this setting. For those, let the values of Y in each row de-
fine the predicted ranking, then

DCG: 6, (Y, Y)=(I/log(rank(Yy.:))) Yui ,  (8)
PREC@k: 6, ;(Y,Y)=(I/k) Yy ;- Yrank(Vy ) <k} . (9)

One approach, similar in spirit to condensed DCG (Sakai,
2007), is to again use the naive estimator from Eq. (5).
However, this and similar estimators are generally biased

for R(Y") (Pradel et al., 2012; Steck, 2013).

To get unbiased estimates of recommendation quality de-
spite missing observations, consider the following connec-
tion to estimating average treatment effects of a given pol-
icy in causal inference, that was already explored in the
contextual bandit setting (Li et al., 2011; Dudik et al.,
2011). If we think of a recommendation as an intervention

*More realistically, Y would contain quality scores derived
from indicators like “clicked” and “watched to the end”.

analogous to treating a patient with a specific drug, in both
settings we want to estimate the effect of a new treatment
policy (e.g. give drug A to women and drug B to men, or
new recommendations Y). The challenge in both cases is
that we have only partial knowledge of how much certain
patients (users) benefited from certain treatments (movies)
(ie., Y, ; with O, ; = 1), while the vast majority of poten-
tial outcomes in Y is unobserved.

3.3. Propensity-Scored Performance Estimators

The key to handling selection bias in both of the above-
mentioned evaluation tasks lies in understanding the pro-
cess that generates the observation pattern in O. This pro-
cess is typically called the Assignment Mechanism in causal
inference (Imbens & Rubin, 2015) or the Missing Data
Mechanism in missing data analysis (Little & Rubin, 2002).
We differentiate the following two settings:

Experimental Setting. In this setting, the assignment
mechanism is under the control of the recommenda-
tion system. An example is an ad-placement system
that controls which ads to show to which user.

Observational Setting. In this setting, the users are part
of the assignment mechanism that generates O. An
example is an online streaming service for movies,
where users self-select the movies they watch and rate.

In this paper, we assume that the assignment mechanism is
probabilistic, meaning that the marginal probability P, ; =
P(O,,; = 1) of observing an entry Y,,; is non-zero for
all user/item pairs. This ensures that, in principle, every
element of Y could be observed, even though any particu-
lar O reveals only a small subset. We refer to P, ; as the
propensity of observing Y,, ;. In the experimental setting,
we know the matrix P of all propensities, since we have
implemented the assignment mechanism. In the observa-
tional setting, we will need to estimate P from the observed
matrix O. We defer the discussion of propensity estimation
to Section 5, and focus on the experimental setting first.

IPS Estimator The Inverse-Propensity-Scoring (IPS) es-
timator (Thompson, 2012; Little & Rubin, 2002; Imbens
& Rubin, 2015), which applies equally to the task of rat-
ing prediction evaluation as to the task of recommendation
quality estimation, is defined as,

S 1 Sui(V, Y
Rips(YIP) = &= > %. (10)
(u,1):04,i=

;
_ U,

Unlike the naive estimator mee(f’), the IPS estimator
is unbiased for any probabilistic assignment mechanism.
Note that the IPS estimator only requires the marginal prob-
abilities P, ; and unbiased-ness is not affected by depen-
dencies within O:
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MAE DCG@50
True IPS SNIPS Naive True IPS SNIPS Naive
REC_.ONES 0.102 0.102+0.007 0.102 +0.007 0.011 4+ 0.001 30.76  30.64 £0.75 30.66 +0.74 153.07 £ 2.13
REC_FOURS 0.026 0.026 + 0.000 0.026 +0.000 0.173 4+ 0.001 52.00 5198 +£0.41 52.084+0.58 313.48 +2.36
ROTATE 2.579 2.581 £0.031 2.579 £0.012 1.168 £ 0.003 1290 13.00 £0.85 12.99 4+ 0.83 1.38 £ 0.09
SKEWED 1.306 1.304 +0.012 1.304 +£0.009 0.912 + 0.002 2459 24.55+092 24.58+0.93 54.87 +1.03
COARSENED 1.320 1.314 £0.015 1.318 £0.005 0.387 + 0.002 4645 46.454+0.53 4644 +0.70 293.27 +1.99

Table 1. Mean and standard deviation of the Naive, IPS, and SNIPS estimators compared to true MAE and DCG@50 on ML100K.

Eo [Rlps(ﬂp)}

6u,i(V,Y)
Pu ; Ou %

)

3.4. Empirical Illustration of Estimators

1
7722 Fo..

1 2 ~
WXU: Z 6u,i(Y,Y)=R(Y) .

To characterize the variability of the IPS estimator, how-
ever, we assume that observations are independent given
P, which corresponds to a multivariate Bernoulli model
where each O, ; is a biased coin flip with probability P, ;.
The following proposition (proof in appendix) provides
some intuition about how the accuracy of the IPS estimator
changes as the propensities become more “non-uniform”.

Proposition 3.1 (Tail Bound for IPS Estimator). Let P be
the independent Bernoulli probabilities of observing each
entry. For any given Y and Y, with probability 1 — n, the
IPS estimator Ryps(Y'|P) does not deviate from the true

R(Y') by more than:

Rips(Y|P) = R(Y)| <

8u,i (VY

where py ; = —“p ) if P, <1, and p,; = 0 otherwise.

To illustrate this bound, consider the case of uniform
propensities P, ; = p. This means that n = p U elements
of Y are revealed in expectation. In this case, the bound is
O(1/(pVUI)). If the P, ; are non-uniform, the bound can
be much larger even if the expected number of revealed el-
ements, > P, ; is n. We are paying for the unbiased-ness
of IPS in terms of variability, and we will evaluate whether
this price is well spent throughout the paper.

SNIPS Estimator. One technique that can reduce
variability is the wuse of control variates (Owen,
2013). Applied to the IPS estimator, we know that

Eo [S(uiyon.m1 pr| = U+ 1. This yields the Self-
Normalized Inverse Propensity Scoring (SNIPS) estimator
(Trotter & Tukey, 1956; Swaminathan & Joachims, 2015)

8u,i(Y,Y)

- P .

i ) (11)
1
Z(u,i):ou,izl P

Z(qL,i):Ou,izl

Rsnips(Y|P) =

The SNIPS estimator often has lower variance than the IPS
estimator but has a small bias (Hesterberg, 1995).

To illustrate the effectiveness of the proposed estimators we
conducted an experiment on the semi-synthetic ML100K
dataset described in Section 6.2. For this dataset, Y is com-
pletely known so that we can compute true performance via
Eq. (1). The probability P, ; of observing a rating Y,, ; was
chosen to mimic the observed marginal rating distribution
in the original ML100K dataset (see Section 6.2) such that,
on average, 5% of the Y matrix was revealed.

Table 1 shows the results for estimating rating predic-
tion accuracy via MAE and recommendation quality via
DCG @50 for the following five prediction matrices Y;. Let
|Y = r| be the number of r-star ratings in Y.

REC_ONES: The prediction matrix Y is identical to the
true rating matrix Y, except that |{(u,?) : Y, ; = 5}|
randomly selected true ratings of 1 are flipped to 5.
This means half of the predicted fives are true fives,
and half are true ones.

REC_FOURS: Same as REC_ONES, but flipping 4-star
ratings instead.

ROTATE: For each predicted rating Yu,i =Y, ,—1when
Y, > 2, and Yw- =5whenV,,;, =1.

SKEWED: Predictions Yu,i are  sampled
NI = Yo = 3=
the interval [0, 6].

COARSENED: If the true rating Y, ; < 3, then }A/w- =3.
Otherwise f’m =4,

from

) and clipped to

Rankings for DCG@50 were created by sorting items ac-
cording to Yl for each user. In Table 1, we report the aver-
age and standard deviation of estimates over 50 samples
of O from P. We see that the mean IPS estimate per-
fectly matches the true performance for both MAE and
DCG as expected. The bias of SNIPS is negligible as
well. The naive estimator is severely biased and its esti-
mated MAE incorrectly ranks the prediction matrices Y;
(e.g. it ranks the performance of REC_ONES higher than
REC_FOURS). The standard deviation of IPS and SNIPS
is substantially smaller than the bias that Naive incurs. Fur-
thermore, SNIPS manages to reduce the standard deviation
of IPS for MAE but not for DCG. We will empirically study
these estimators more comprehensively in Section 6.
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4. Propensity-Scored Recommendation
Learning

We will now use the unbiased estimators from the previous
section in an Empirical Risk Minimization (ERM) frame-
work for learning, prove generalization error bounds, and
derive a matrix factorization method for rating prediction.

4.1. ERM for Recommendation with Propensities

Empirical Risk Minimization underlies many successful
learning algorithms like SVMs (Cortes & Vapnik, 1995),
Boosting (Schapire, 1990), and Deep Networks (Bengio,
2009). Weighted ERM approaches have been effective
for cost-sensitive classification, domain adaptation and co-
variate shift (Zadrozny et al., 2003; Bickel et al., 2009;
Sugiyama & Kawanabe, 2012). We adapt ERM to our set-
ting by realizing that Eq. (1) corresponds to an expected
loss (i.e. risk) over the data generating process P(O|P).
Given a sample from P(O|P), we can think of the IPS
estimator from Eq. (10) as the Empirical Risk R(Y) that
estimates R(Y') for any Y.

Definition 4.1 (Propensity-Scored ERM for Recommenda-
tion). Given training observations O from'Y with marginal
propensities P, given a hypothesis space H of predictions
Y, and given a loss function 6, ;(Y,Y), ERM selects the
Y € H that optimizes:

yERM - — argmin{filpg(f/w)} ) (12)

YeH

Using the SNIPS estimator does not change the argmax.
To illustrate the validity of the propensity-scored ERM ap-
proach, we state the following generalization error bound
(proof in appendix) similar to Cortes et al. (2010). We con-
sider only finite H for the sake of conciseness.

Theorem 4.2 (Propensity-Scored ERM Generalization Er-
ror Bound). For any finite hypothesis space of predictions
H = {V1, ...737|H|} and loss 0 < 6,:(Y,Y) < A, the true
risk R(Y) of the empirical risk minimizer Y EEM from H
using the IPS estimator, given training observations O from
Y with independent Bernoulli propensities P, is bounded
with probability 1 — n by:

R(YERM) < RIPS(YER]\/I|P
log (2|H
/ g ( | |/m) /ZP2 (13)

4.2. Propensity-Scored Matrix Factorization

‘We now use propensity-scored ERM to derive a matrix fac-
torization method for the problem of rating prediction. As-
sume a standard rank-d-restricted and Ly-regularized ma-
trix factorization model Yu’i = vg w; +a, +b; +c with user,
item, and global offsets as our hypothesis space . Under

this model, propensity-scored ERM leads to the following
training objective:

argmin Zdw(Y, VIW+A) N

7 2) a4
V,W,A P, A(IVIEHIWE) [(14)

Ou,izl

where A encodes the offset terms and Y EEM — VT 1 A,

Except for the propensities P, ; that act like weights for
each loss term, the training objective is identical to the
standard incomplete matrix factorization objective (Ko-
ren, 2008; Steck, 2010; Hu et al., 2008) with MSE (using
Eq. (3)) or MAE (using Eq. (2)). So, we can readily draw
upon existing optimization algorithms (i.e., Gemulla et al.,
2011; Yu et al., 2012) that can efficiently solve the train-
ing problem at scale. For the experiments reported in this
paper, we use Limited-memory BFGS (Byrd et al., 1995).
Our implementation is available online?.

Conventional incomplete matrix factorization is a special
case of Eq. (14) for MCAR (Missing Completely At Ran-
dom) data, i.e., all propensities P, ; are equal. Solving
this training objective for other &, ;(Y,Y’) that are non-
differentiable is more challenging, but possible avenues ex-
ist (Joachims, 2005; Chapelle & Wu, 2010). Finally, note
that other recommendation methods (e.g., Weimer et al.,
2007; Lin, 2007) can in principle be adapted to propensity
scoring as well.

5. Propensity Estimation for Observational
Data

We now turn to the Observational Setting where propen-
sities need to be estimated. One might be worried that
we need to perfectly reconstruct all propensities for effec-
tive learning. However, as we will show, we merely need
estimated propensities that are “better” than the naive as-
sumption of observations being revealed uniformly, i.e.,

= [{(w,) : Oy, = 1}|/ (U - I) for all users and items.
The following characterizes “better” propensities in terms
of the bias they induce and their effect on the variability of
the learning process.

Lemma 5.1 (Bias of IPS Estimator under Inaccurate
Propensities). Let P be the marginal probabilities of ob-
serving an entry of the rating matrix Y, and let P be the
estimated propensities such that PM > 0 for all u,i. The
bias of the IPS estimator Eq. (10) using Pis:

5u.,i(Ya Y)
U-1

P,

- ==
P,

bias (Rlps(mﬁ)) - (15)

u,t

In addition to bias, the following generalization error bound
(proof in appendix) characterizes the overall impact of the
estimated propensities on the learning process.

*https://www.cs.cornell.edu/~schnabts/mnar/
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Theorem 5.2 (Propensity-Scored ERM Generalization Er-
ror Bound under Inaccurate Propensities). For any finite
hypothesis space of predictions H = {Y1, ..., §A/'|H|}, the
transductive prediction error of the empirical risk min-
imizer YERM using the IPS estimator with estimated
propensities P (]AD,M > 0) and given training observations
O from Y with independent Bernoulli propensities P, is
bounded by:

Pu,i
u,i Pu,i

A [log (2|H]|/n) 1
R A e ;ﬁ . (16)

The bound shows a bias-variance trade-off that does not oc-
cur in conventional ERM. In particular, the bound suggests
that it may be beneficial to overestimate small propensities,
if this reduces the variability more than it increases the bias.

1-—

N . . oA A
ERM < ERM
R(Y ) < Rips(Y |P)+—U'I E

5.1. Propensity Estimation Models.

Recall that our goal is to estimate the probabilities P, ; with
which ratings for user u and item ¢ will be observed. In
general, the propensities

P,i=P(O,,;,=1]X,X"Y) (17)

can depend on some observable features X (e.g., the pre-
dicted rating displayed to the user), unobservable fea-
tures X" (e.g., whether the item was recommended by
a friend), and the ratings Y. It is reasonable to assume that
O, is independent of the new predictions Y (and there-
fore independent of 4, ;(Y,Y")) once the observable fea-
tures are taken into account. The following outlines two
simple propensity estimation methods, but there is a wide
range of other techniques available (e.g., McCaffrey et al.,
2004) that can cater to domain-specific needs.

Propensity Estimation via Naive Bayes. The first ap-
proach estimates P(O,, ;| X, X" V') by assuming that de-
pendencies between covariates X, X "¢ and other ratings
are negligible. Eq. (17) then reduces to P(O,, ;|Y, ;) sim-
ilar to Marlin & Zemel (2009). We can treat Y,, ; as ob-
served, since we only need the propensities for observed
entries to compute IPS and SNIPS. This yields the Naive
Bayes propensity estimator:

P(Y =r|0=1)P0O=1)

P(Ouyl:1|Yu77‘:7"): P(Y:’/‘)

(18)
We dropped the subscripts to reflect that parameters are
tied across all v and ¢. Maximum likelihood estimates for
P(Y =r | O =1)and P(O = 1) can be obtained by
counting observed ratings in MNAR data. However, to es-
timate P(Y = r), we need a small sample of MCAR data.

Propensity Estimation via Logistic Regression The
second propensity estimation approach we explore (which
does not require a sample of MCAR data) is based on lo-
gistic regression and is commonly used in causal infer-
ence (Rosenbaum, 2002). It also starts from Eq. (17),
but aims to find model parameters ¢ such that O be-
comes independent of unobserved X hid and Y, ie.,
POy X, X" Y) = P(0,.:|X,$). The main model-
ing assumption is that there exists a ¢ = (w, 3,7) such
that P, ; = o (w'' Xy + Bi + ) - Here, X, ; is a vector
encoding all observable information about a user-item pair
(e.g., user demographics, whether an item was promoted,
etc.), and o(-) is the sigmoid function. f3; and ~y, are per-
item and per-user offsets.

6. Empirical Evaluation

We conduct semi-synthetic experiments to explore the em-
pirical performance and robustness of the proposed meth-
ods in both the experimental and the observational set-
ting. Furthermore, we compare against the state-of-the-
art joint-likelihood method for MNAR data (Herndndez-
Lobato et al., 2014) on real-world datasets.

6.1. Experiment Setup

In all experiments, we perform model selection for the reg-
ularization parameter A\ and/or the rank of the factorization
d via cross-validation as follows. We randomly split the
observed MNAR ratings into k folds (k = 4 in all exper-
iments), training on £ — 1 and evaluating on the remain-
ing one using the IPS estimator. Reflecting this additional
split requires scaling the propensities in the training folds
by % and those in the validation fold by % The parame-
ters with the best validation set performance are then used
to retrain on all MNAR data. We finally report performance
on the MCAR test set for the real-world datasets, or using
Eq. (1) for our semi-synthetic dataset.

6.2. How does sampling bias severity affect evaluation?

First, we evaluate how different observation models impact
the accuracy of performance estimates. We compare the
Naive estimator of Eq. (5) for MSE, MAE and DCG with
their propensity-weighted analogues, IPS using Eq. (10)
and SNIPS using Eq. (11) respectively. Since this exper-
iment requires experimental control of sampling bias, we
created a semi-synthetic dataset and observation model.

ML100K Dataset. The ML100K dataset* provides 100K
MNAR ratings for 1683 movies by 944 users. To allow
ground-truth evaluation against a fully known rating ma-
trix, we complete these partial ratings using standard ma-
trix factorization. The completed matrix, however, gives

*http://grouplens.org/datasets/movielens/


http://grouplens.org/datasets/movielens/

Recommendations as Treatments:

Debiasing Learning and Evaluation

10! 10°

— Naive

100 1(1—’\ — IPS
— SNIPS

10! 10!
1072 10°)
MSE DCG

10 107! -
0.2 0.4 0.6 0.8 1.( 0.2 0.4 0.6 0.8 1.0

@ @

Estimation error (RMSE)

Figure 2. RMSE of the estimators in the experimental setting as
the observed ratings exhibit varying degrees of selection bias.

unrealistically high ratings to almost all movies. We there-
fore adjust ratings for the final Y to match a more realistic
rating distribution [p1, pa, p3, pa, ps] for ratings 1 to 5 as
given in Marlin & Zemel (2009) as follows: we assign the
bottom p; fraction of the entries by value in the completed
matrix a rating of 1, and the next p» fraction of entries by
value a rating of 2, and so on. Hyper-parameters (rank
d and L2 regularization \) were chosen by using a 90-10
train-test split of the 100K ratings, and maximizing the 0/1
accuracy of the completed matrix on the test set.

ML100K Observation Model. If the underlying rating
is 4 or 5, the propensity for observing the rating is equal
to k. For ratings » < 4, the corresponding propensity is
ka*~". For each a, k is set so that the expected num-
ber of ratings we observe is 5% of the entire matrix. By
varying o > 0, we vary the MNAR effect: o = 1
is missing uniformly at random (MCAR), while @ — 0
only reveals 4 and 5 rated items. Note that o = 0.25
gives a marginal distribution of observed ratings that rea-
sonably matches the observed MNAR rating marginals on
MLI100K (][0.06,0.11,0.27,0.35,0.21] in the real data vs.
[0.06,0.10,0.25,0.42,0.17] in our model).

Results. Table 1, described in Section 3.4, shows the esti-
mated MAE and DCG@50 when oo = 0.25. Next, we vary
the severity of the sampling bias by changing o € (0, 1].
Figure 2 reports how accurately (in terms of root mean
squared estimation error (RMSE)) each estimator predicts
the true MSE and DCG respectively. These results are for
the Experimental Setting where propensities are known.
They are averages over the five prediction matrices Y; given
in Section 3.4 and across 50 trials. Shaded regions indicate
a 95% confidence interval.

Over most of the range of «, in particular for the realis-
tic value of o = 0.25, the IPS and SNIPS estimators are
orders-of-magnitude more accurate than the Naive estima-
tor. Even for severely low choices of «, the gain due to
bias reduction of IPS and SNIPS still outweighs the added
variability compared to Naive. When o = 1 (MCAR),
SNIPS is algebraically equivalent to Naive, while IPS pays
a small penalty due to increased variability from propensity
weighting. For MSE, SNIPS consistently reduces estima-
tion error over /PS while both are tied for DCG.

175
1.50 — MPF-Naive

1.25 — MF-Naive
0 —  MFIPS 035 MF.IPS
07 . —  MFIPS-NB
0.
gn 50 9
2

o —
0.2 0.4 0.6 0.8 1.0 010! 102 100 100 100 10°
@ Number of MCAR ratings seen by NB

Figure 3. Prediction error (MSE) of matrix factorization methods
as the observed ratings exhibit varying degrees of selection bias
(left) and as propensity estimation quality degrades (right).

6.3. How does sampling bias severity affect learning?

Now we explore whether these gains in risk estimation ac-
curacy translate into improved learning via ERM, again in
the Experimental Setting. Using the same semi-synthetic
ML100K dataset and observation model as above, we com-
pare our matrix factorization MF-IPS with the traditional
unweighted matrix factorization MF-Naive. Both methods
use the same factorization model with separate \ selected
via cross-validation and d = 20. The results are plotted
in Figure 3 (left), where shaded regions indicate 95% con-
fidence intervals over 30 trials. The propensity-weighted
matrix factorization MF-IPS consistently outperforms con-
ventional matrix factorization in terms of MSE. We also
conducted experiments for MAE, with similar results.

6.4. How robust is evaluation and learning to
inaccurately learned propensities?

We now switch from the Experimental Setting to the Obser-
vational Setting, where propensities need to be estimated.
To explore robustness to propensity estimates of varying
accuracy, we use the ML100K data and observation model
with o = 0.25. To generate increasingly bad propensity
estimates, we use the Naive Bayes model from Section 5.1,
but vary the size of the MCAR sample for estimating the
marginal ratings P(Y = r) via the Laplace estimator.

Figure 4 shows how the quality of the propensity esti-
mates impacts evaluation using the same setup as in Sec-
tion 6.2. Under no condition do the IPS and SNIPS es-
timator perform worse than Naive. Interestingly, /PS-NB
with estimated propensities can perform even better than
IPS-KNOWN with known propensities, as can be seen for
MSE. This is a known effect, partly because the estimated
propensities can provide an effect akin to stratification (Hi-
rano et al., 2003; Wooldridge, 2007).

Figure 3 (right) shows how learning performance is af-
fected by inaccurate propensities using the same setup as in
Section 6.3. We compare the MSE prediction error of MF-
IPS-NB with estimated propensities to that of MF-Naive
and MF-IPS with known propensities. The shaded area
shows the 95% confidence interval over 30 trials. Again,
we see that MF-IPS-NB outperforms MF-Naive even for
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Figure 4. RMSE of IPS and SNIPS as propensity estimates de-
grade. IPS with true propensities and Naive are given as reference.

severely degraded propensity estimates, demonstrating the
robustness of the approach.

6.5. Performance on Real-World Data

Our final experiment studies performance on real-world
datasets. We use the following two datasets, which both
have a separate test set where users were asked to rate a
uniformly drawn sample of items.

Yahoo! R3 Dataset. This dataset’® (Marlin & Zemel,
2009) contains user-song ratings. The MNAR training
set provides over 300K ratings for songs that were self-
selected by 15400 users. The test set contains ratings by a
subset of 5400 users who were asked to rate 10 randomly
chosen songs. For this data, we estimate propensities via
Naive Bayes. As a MCAR sample for eliciting the marginal
rating distribution, we set aside 5% of the test set and only
report results on the remaining 95% of the test set.

Coat Shopping Dataset. We collected a new dataset®
simulating MNAR data of customers shopping for a coat in
an online store. The training data was generated by giving
Amazon Mechanical Turkers a simple web-shop interface
with facets and paging. They were asked to find the coat
in the store that they wanted to buy the most. Afterwards,
they had to rate 24 of the coats they explored (self-selected)
and 16 randomly picked ones on a five-point scale. The
dataset contains ratings from 290 Turkers on an inventory
of 300 items. The self-selected ratings are the training set
and the uniformly selected ratings are the test set. We learn
propensities via logistic regression based on user covari-
ates (gender, age group, location, and fashion-awareness)
and item covariates (gender, coat type, color, and was it
promoted). A standard regularized logistic regression (Pe-
dregosa et al., 2011) was trained using all pairs of user and
item covariates as features and cross-validated to optimize
log-likelihood of the self-selected observations.

Results. Table 2 shows that our propensity-scored ma-
trix factorization MF-IPS with learnt propensities substan-
tially and significantly outperforms the conventional matrix
factorization approach, as well as the Bayesian imputation

>http://webscope.sandbox.yahoo.com/
Shttps://www.cs.cornell.edu/~schnabts/mnar/

YAHOO COAT
MAE MSE MAE MSE
MF-IPS  0.810 0.989 0.860 1.093
MF-Naive 1.154 1.891 0.920 1.202
HL MNAR 1.177 2.175 0.884 1.214
HL MAR 1.179 2.166 0.892 1.220

Table 2. Test set MAE and MSE on the Yahoo and Coat datasets.

models from (Hernandez-Lobato et al., 2014), abbreviated
as HL-MNAR and HL-MAR (paired t-test, p < 0.001 for
all). This holds for both MAE and MSE. Furthermore, the
performance of MF-IPS beats the best published results for
Yahoo in terms of MSE (1.115) and is close in terms of
MAE (0.770) (the CTP-v model of (Marlin & Zemel, 2009)
as reported in the supplementary material of Herndndez-
Lobato et al. (2014)). For MF-IPS and MF-Naive all hyper-
parameters (i.e., A € {1076, ..., 1} and d € {5, 10,20, 40})
were chosen by cross-validation. For the HL baselines, we
explored d € {5,10,20,40} using software provided by
the authors’ and report the best performance on the test
set for efficiency reasons. Note that our performance num-
bers for HL on Yahoo closely match the values reported in
(Hernandez-Lobato et al., 2014).

Compared to the complex generative HL models, we con-
clude that our discriminative MF-IPS performs robustly
and efficiently on real-world data. We conjecture that this
strength is a result of not requiring any generative assump-
tions about the validity of the rating model. Furthermore,
note that there are several promising directions for further
improving performance, like propensity clipping (Strehl
et al., 2010), doubly-robust estimation (Dudik et al., 2011),
and the use of improved methods for propensity estimation
(McCaffrey et al., 2004).

7. Conclusions

We proposed an effective and robust approach to handle se-
lection bias in the evaluation and training of recommender
systems based on propensity scoring. The approach is a
discriminative alternative to existing joint-likelihood meth-
ods which are generative. It therefore inherits many of
the advantages (e.g., efficiency, predictive performance, no
need for latent variables, fewer modeling assumptions) of
discriminative methods. The modularity of the approach—
separating the estimation of the assignment model from
the rating model—also makes it very practical. In par-
ticular, any conditional probability estimation method can
be plugged in as the propensity estimator, and we conjec-
ture that many existing rating models can be retrofit with
propensity weighting without sacrificing scalability.

https://bitbucket.org/jmh233/missingdataicm]2014
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Proof of Proposition 3.1

Proposition (Tail Bound for IPS Estimator). Let P be the
independent Bernoulli probabilities of observing each en-
try. For any given Y and Y, with probability 1 —n, the IPS
estimator Ryps (Y| P) does not deviate from the true R(Y')
by more than:

Rips(Y|P) — R(Y)| <

where py, ; = w if Py <1, and p, ; = 0 otherwise.

Proof. Hoeffding’s inequality states that for independent
bounded random variables Z1, ..., Z,, that take values in
intervals of sizes pq, ..., p, With probability 1 and for any

e>0
—2¢2
P ZZk—E sz >e| <2exp| =3
k k 2k P

Defining P <Zk = 76“’;3(}/7?)) = P,;and P(Z;, =0) =
1 — P, ; relates Hoeffding’s inequality to the IPS estimator

and its expectation, which equals R(Y) as shown earlier.

This yields

) 2172, 12

P( eU .
Zu,i pui

where p,, ; is defined as in the statement of the proposition
above. Solving for € completes the proof. O

Rips(Y|P) — R(Y)’ > 6) < 2exp (

Proof of Theorem 4.2

Theorem (Propensity-Scored ERM Generalization Error
Bound). For any finite hypothesis space of predictions
H = {)71, ...,Y/|H|} and loss 0 < 6,,;(Y, Y) < A, the true
risk R(Y') of the empirical risk minimizer YERM from H
using the IPS estimator given training observations O from
Y with independent Bernoulli propensities P is bounded
with probability 1 — n by

R(YER]M) < RIPS(YEPUM'P) +

A [oa@HIn [~ 1
vV 2w O

{TBS49, FA234, AS3354, NC475, TI136} @CORNELL.EDU

Proof. Making a uniform convergence argument via Ho-
effding and union bound yields:

P (‘R(YERM) - RIPS(YERMW)\ < e) >1-y

<P (mAax ‘R(YZ) — RIPS(YAP)‘ < e> >1—n
v;

& P V|ROD — Rips(VIP)| 2 | <
¥

<= %P (‘R(Yz) —RIPS(YHP)‘ > 6) <n

—2¢2
<s|H|2exp | o =7 | <7
U2.]2 w,i ﬁ
Solving the last line for € yields the desired result. O

Proof of Lemma 5.1

Lemma (Bias of IPS Estimator under Inaccurate Propensi-
ties). Let P be the marginal probabilities of observing an
entry of the rating matrix Y, and let P be the estimated
propensities such that IE’M > 0 for all u,i. The bias of the
IPS estimator using Pis

6u,i(Ya )
U-I

| L

bias (R,Ps(mﬁ)) -

u,i

u,i

Proof. Bias is defined as
bias (RIPS(Y\P)) = R(Y) - Eo [R,ps(mp)},

where R(Y) is the true risk of Y over the complete rating
matrix. Expanding both terms yields

1 N
RY) = ﬁzéu,i(KY) 2

Eo [R,Psmﬁ)] -

U,

1 P, -
i Z 5 iV Y)- 3

Rest follows after subtracting line (3) from (2). O]



Supplementary Material

Proof of Theodem 5.2

Theorem (Propensity-Scored ERM Generalization Error
Bound under Inaccurate Propensities). For any finite hy-
pothesis space of predictions H = {}71, -"’Y\HI}’ the
transductive prediction error of the empirical risk min-
imizer Y/ERM, using the IPS estimator with estimated
propensities P ( PM > 0) and given training observations
O from Y with independent Bernoulli propensities P, is
bounded by:

N R N . A P,
R YERM < R YERM P 1— A'U'»l
( ) < Rpps( | )+7U-I 2 Pus
A [log (2[H]|/n) 1
-~
+U'I 2 ; Pz, @

Proof. First, notice that we can write

R(VERM) — R(VERM)_R, {RIPS(YERJWHS)}
+Eo []%IPS(YERM‘p)]

= bias (]%IPS(YERM|p))

+Eo {RIPS(YERM‘P)}

A
U- 1~

U,

+Eo []%IPS(YERM \P)}

Pu,i

Pu,i

IN

which follows from Lemma 5.1.

We are left to bound the following

PQngYMWﬁﬂ_mﬂémg?“Wﬁﬂ‘gg
>1-19
—2¢2

A2 1
U212 Lau,i p2

< |H| - 2exp <.

The intermediate steps here are analogous to the steps in the
proof of Theorem 4.2. Rearranging the terms and adding
the bias gives the stated results. O

Propensity Estimation via Logistic Regression

In contrast to other discriminative models, logistic regres-
sion offers some attractive properties for propensity esti-
mation.

Observation. For the logistic propensity model, we ob-
serve that at optimality of the MLE estimate, the following

two equations hold:

Vi: Oui=Y P 5)
V’UJ . ZOU,Z = ZPUJ. (6)

In other words, the logistic propensity model is able to learn
well-calibrated marginal probabilities.

Proof. The log-likelihood function of the entire model af-
ter simplification is:

(OIX,¢) = >

(i,u):Ou,izl

_Z [1 + ewTX'u,i+ﬂi+’Y'ui| )

7,

[wTXu,i + 62 + ’Yu]
(7)

The gradient for bias term (3; (analogously for +,,) for item
1 1s given as

ov
%zg%r;mb (8)

Solving the gradient for zero yields the stated result. O
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