
Journal of Artificial Intelligence Research 53 (2015) 1-40 Submitted 08/14; published 05/15

Coactive Learning

Pannaga Shivaswamy pshivaswamy@linkedin.com
LinkedIn Corporation
2029 Stierlin Ct
Mountain View, CA 94043, USA

Thorsten Joachims tj@cs.cornell.edu

Department of Computer Science

Cornell University

Ithaca, NY 14853, USA

Abstract

We propose Coactive Learning as a model of interaction between a learning system and
a human user, where both have the common goal of providing results of maximum utility
to the user. Interactions in the Coactive Learning model take the following form: at each
step, the system (e.g. search engine) receives a context (e.g. query) and predicts an object
(e.g. ranking); the user responds by correcting the system if necessary, providing a slightly
improved – but not necessarily optimal – object as feedback. We argue that such preference
feedback can be inferred in large quantity from observable user behavior (e.g., clicks in
web search), unlike the optimal feedback required in the expert model or the cardinal
valuations required for bandit learning. Despite the relaxed requirements for the feedback,
we show that it is possible to adapt many existing online learning algorithms to the coactive
framework. In particular, we provide algorithms that achieve O(1/

√
T) average regret in

terms of cardinal utility, even though the learning algorithm never observes cardinal utility
values directly. We also provide an algorithm with O(log(T)/T) average regret in the
case of λ-strongly convex loss functions. An extensive empirical study demonstrates the
applicability of our model and algorithms on a movie recommendation task, as well as
ranking for web search.

1. Introduction

In a wide range of systems in use today, the interaction between human and system takes
the following form. The user issues a command (e.g. query) and receives a – possibly
structured – result in response (e.g. ranking). The user then interacts with the results (e.g.
clicks), thereby providing implicit feedback about the user’s utility function. Here are three
examples of such systems and their typical interaction patterns:

Web Search: In response to a query, a search engine presents the ranking [A,B,C,D, ...]
and observes that the user clicks on documents B and D.

Movie Recommendation: An online service recommends movie A to a user. However,
the user rents movie B after browsing the collection.

Machine Translation: An online machine translator is used to translate a wiki page from
language A to B. The system observes some corrections the user makes to the trans-
lated text.

c©2015 AI Access Foundation. All rights reserved.

Shivaswamy & Joachims

In all the above examples, the user provides some feedback about the results of the
system. However, the feedback is only an incremental improvement, not necessarily the
optimal result. For example, from the clicks on the web search results we can infer that the
user would have preferred the ranking [B,D,A,C, ...] over the one we presented. However,
this is unlikely to be the best possible ranking. Similarly in the recommendation example,
movie B was preferred over movie A, but there may have been even better movies that
the user did not find while browsing. And in the machine translation example, the cor-
rected text need not be the best possible translation from language A to language B. In all
three examples, the algorithm typically receives a slightly improved result from the user as
feedback, but not necessarily the optimal prediction or any cardinal utilities. We conjecture
that many other applications fall into this schema, ranging from news filtering to personal
robotics.

In this paper, we propose Coactive Learning as a model of such system-user interactions.
We formalize Coactive Learning as a general model of interaction between a learning system
and its user, define a suitable notion of regret, and validate the key modeling assumption
– namely whether observable user behavior can provide valid feedback in our model – in a
user study for web search. The new model can be viewed as a cooperative learning process
between system and user, where both parties aim to optimize utility but lack the means to
achieve this goal on their own. Specifically, the (boundedly rational) user is computationally
limited in maximizing utility over the space of alternatives, while the system is limited in
how well it knows the user’s utility function.

The proposed online learning framework differs significantly from existing online learning
models in terms of the observed feedback (see the related works section for a comparison). A
strength of the proposed framework is that it is possible to derive a wide range of coactive
learning algorithms by adapting existing online algorithms for convex optimization. We
provide a template for Coactive Learning algorithms and then show several instances of
this template in this paper, and in each case, we prove that the worst case analysis of
the algorithm carries over from the conventional online learning framework to coactive
learning despite the differences between the two models. In particular, in the cases of linear
utility models and convex cost functions we show O(1/

√
T) regret bounds with a matching

lower bound. We also show that the regret bound can be improved with a second order
algorithm for strongly convex functions. The learning algorithms perform structured output
prediction (see Bakir, Hofmann, Schölkopf, Smola, Taskar, & Vishwanathan, 2007) and thus
can be applied in a wide variety of problems. We study several interesting extensions of
the framework using batch updates, expected feedback, and an exponentiated learning
algorithm. Finally, we provide extensive empirical evaluations of our algorithms on a movie
recommendation and a web search task, showing that the algorithms are highly efficient
and effective in practical settings.

The rest of this paper is organized as follows. We discuss related work in Section 2. In
Section 3 we formally introduce the coactive learning model and also motivate the model
with a real-world user study. We present the linear version of our algorithm along with
several extensions in Section 4. In Section 5, we then detail a general schema for deriving
coactive learning algorithms and their regret bounds. In particular, we derive an exponen-
tiated gradient algorithm in Section 5.1, and we propose coactive learning algorithms for
minimizing general convex losses and λ-strongly convex losses in Sections 5.2 and 5.3. An

2

Coactive Learning

empirical evaluation of the proposed framework and algorithms is done in Section 6 and we
conclude in Section 7. We include most of our proofs in the Appendix.

2. Related Works

The Coactive Learning Model bridges the gap between two forms of feedback that have been
well studied in online learning. On one side there is the multi-armed bandit model (e.g.,
Auer, Cesa-Bianchi, Freund, & Schapire, 2002b; Auer, Cesa-Bianchi, & Fischer, 2002a),
where an algorithm chooses an action and observes the utility of (only) that action. On
the other side, utilities of all possible actions are revealed in the case of learning with
expert advice (e.g., Cesa-Bianchi & Lugosi, 2006a). Online convex optimization (Zinkevich,
2003; Hazan, Agarwal, & Kale, 2007) and online convex optimization in the bandit setting
(Flaxman, Kalai, & McMahan, 2005) are continuous relaxations of the expert and the
bandit problems respectively. Our model, where information about two arms is revealed
at each iteration (the one we presented and the one we receive as feedback from the user),
sits between the expert and the bandit setting. Most closely related to Coactive Learning
is the dueling bandits setting (Yue, Broder, Kleinberg, & Joachims, 2009; Yue & Joachims,
2009). The key difference is that both arms are chosen by the algorithm in the dueling
bandits setting, whereas one of the arms is chosen by the user in the Coactive Learning
setting. Our model allows contextual information like in contextual bandits (Langford &
Zhang, 2007), however, the arms in our problem are structured objects such as rankings.
A summary of how our framework compares with other existing frameworks is shown in
Table 1. Other types of feedback have also been explored in the literature. For example, in
the multi-class classification problems, after the algorithm makes a prediction based on the
context, the feedback received is only whether the prediction is correct or wrong as opposed
to the actual label (Crammer & Gentile, 2011; Kakade, Shalev-Shwartz, & Tewari, 2008).
This can be seen as observing partial feedback (as opposed to the actual cardinal feedback)
in a bandit problem.

As pointed out above, Coactive Learning algorithms and conventional online learning
algorithms operate in different types of environments. Coactive Learning algorithms present
an object and observe another object as a feedback, while online convex learning algorithms
pick a vector in each step and observe the gradient at that vector as feedback. Despite the
contrast between online learning and Coactive Learning, two of the algorithms presented
in this paper are closely related to those in the work of Zinkevich (2003) and Hazan et al.
(2007). We show that it is possible to adapt the regret bounds of these algorithms to
corresponding regrets bounds for Coactive Learning. At the heart of all our algorithms and
analysis is the well-known idea (Polyak & Tsypkin, 1973) that the descent algorithms do
not necessarily need to know the gradients, but that a vector with positive inner product
with the gradient in expectation suffices.

While feedback in Coactive Learning takes the form of a preference, it is different from
ordinal regression and ranking. Ordinal regression (e.g., Crammer & Singer, 2001) assumes
training examples (x, y), where y is a rank. In the Coactive Learning model, absolute ranks
are never revealed. More closely related is learning with pairs of examples (Herbrich, Grae-
pel, & Obermayer, 2000; Freund, Iyer, Schapire, & Singer, 2003; Chu & Ghahramani, 2005),
since it circumvents the need for absolute ranks; only relative orderings are required. Vari-

3

Shivaswamy & Joachims

Framework Algorithm Feedback

Bandits pull an arm observe cardinal reward for the arm pulled
Experts pull an arm observe cardinal rewards for all the arms
Dueling Bandits pull two arms observe feedback on which one is better
Coactive Learning pull an arm observe another arm which is better

Table 1: A comparison of different online learning frameworks.

ants of such pairwise ranking algorithms have been applied to Natural Language Processing
(Haddow, Arun, & Koehn, 2011; Zhang, Lei, Barzilay, Jaakkola, & Globerson, 2014) and
image annotation (Weston, Bengio, & Usunier, 2011). However, existing approaches require
an iid assumption and typically perform batch learning. Finally, there is a large body of
work on ranking (see Liu, 2009). These approaches are different from Coactive Learning as
they require training data (x, y) where y is the optimal ranking for query x. However, we
will draw upon structured prediction approaches for ranking problems in the design of our
models.

Coactive learning was first proposed by Shivaswamy and Joachims (2012); this paper
serves as a journal extension of that paper, adding a complete discussion of batch updates
and expected feedback, the exponentiated gradient algorithm, the O(log(T)/T) algorithm
for λ-strongly convex loss functions, and a substantially extended empirical evaluation.
Since then, coactive learning has been applied to intrinsically diverse retrieval (Raman,
Shivaswamy, & Joachims, 2012), learning ranking function from click feedback (Raman,
Joachims, Shivaswamy, & Schnabel, 2013), optimizing social welfare (Raman & Joachims,
2013), personal robotics (Jain, Wojcik, Joachims, & Saxena, 2013), pattern discovery (Boley,
Mampaey, Kang, Tokmakov, & Wrobel, 2013), robotic monitoring (Somers & Hollinger,
2014), and extended to allow approximate inference (Goetschalckx, Fern, & Tadepalli, 2014).

3. Coactive Learning Model

We now introduce coactive learning as a model of interaction (in rounds) between a learning
system (e.g. search engine) and a human (search user) where both the human and learning
algorithm have the same goal (of obtaining good results). At each round t, the learning
algorithm observes a context xt ∈ X (e.g. a search query) and presents a structured object
yt ∈ Y (e.g. a ranked list of URLs). The utility of yt ∈ Y to the user for context xt ∈ X is
described by a utility function U(xt,yt), which is unknown to the learning algorithm. As
feedback the human user returns an improved object ȳt ∈ Y (e.g. reordered list of URLs),
i.e.,1

U(xt, ȳt) > U(xt,yt), (1)

when such an object ȳt exists. In fact, we will also allow violations of (1) when we formally
model user feedback in Section 3.1.

The process by which the user generates the feedback ȳt can be understood as an
approximately utility-maximizing action, where the user is modeled as a boundedly rational

1. The improvements should be not just strict, but by a “margin”, this will be clear in Section 3.1.

4

Coactive Learning

agent. In particular, the user selects the feedback object ȳt by approximately maximizing
utility over a user-defined subset Ȳt of all possible Y.

ȳt = argmaxy∈ȲU(xt,y) (2)

This approximately and boundedly rational user may employ various tools (e.g., query
reformulations, browsing) to construct the subset Ȳ and to perform this search. Importantly,
however, the feedback ȳt is typically not the optimal label which is defined as,

y∗t := argmaxy∈YU(xt,y). (3)

In this way, Coactive Learning covers settings where the user cannot manually optimize
the argmax over the full Y (e.g. produce the best possible ranking in web search), or has
difficulty expressing a bandit-style cardinal rating U(xt,yt) for yt in a consistent manner.
This puts our preference feedback ȳt in stark contrast to supervised learning approaches
which require (xt,y

∗
t). But even more importantly, our model implies that reliable pref-

erence feedback (1) can be derived from observable user behavior (i.e., clicks), as we will
demonstrate in Section 3.2 for web search. We conjecture that similar feedback strategies
exist in many application settings (e.g., Jain et al., 2013; Boley et al., 2013; Somers &
Hollinger, 2014; Goetschalckx et al., 2014), especially when users can be assumed to act
approximately and boundedly rational according to U .

Despite the weak preference feedback, the aim of the algorithm is nevertheless to present
objects with utility close to that of the optimal y∗t . Whenever, the algorithm presents an
object yt under context xt, we say that it suffers a regret U(xt,y

∗
t) − U(xt,yt) at time

step t. Formally, we consider the average regret suffered by the algorithm over T steps as
follows:

REGT =
1

T

T∑
t=1

(U(xt,y
∗
t)− U(xt,yt)) . (4)

The goal of the learning algorithm is to minimize REGT , thereby providing the human with
predictions yt of high utility. Note, however, that a cardinal value of U is never observed
by the learning algorithm, but U is only revealed ordinally through preferences (1).

3.1 Quantifying Preference Feedback Quality

To provide any theoretical guarantees about the regret of a learning algorithm in the coactive
setting, we need to quantify the quality of the user feedback. Note that this quantification is
a tool for theoretical analysis, not a prerequisite or parameter to the algorithm. We quantify
feedback quality by how much improvement ȳ provides in utility space. In the simplest case,
we say that user feedback is strictly α-informative when the following inequality is satisfied:

U(xt, ȳt)− U(xt,yt) ≥ α(U(xt,y
∗
t)− U(xt,yt)). (5)

In the above inequality, α ∈ (0, 1] is an unknown parameter. Feedback is such that utility of
ȳt is higher than that of yt by a fraction α of the maximum possible utility range U(xt,y

∗
t)−

U(xt,yt). The term on the right hand side in the above inequality ensures that user feedback

5

Shivaswamy & Joachims

ȳt is not only better than yt, but also better by a margin α(U(xt,y
∗
t)−U(xt,yt)). Violations

of the above feedback model are allowed by introducing slack variables ξt:
2

U(xt, ȳt)− U(xt,yt) = α(U(xt,y
∗
t)− U(xt,yt))− ξt. (6)

Note that the ξt are not restricted to be positive, but can be negative as well. We refer to
the above feedback model as α-informative feedback. Note also that it is possible to express
feedback of any quality using (6) with an appropriate value of ξt. Our regret bounds will
contain ξt, quantifying to what extent the α-informative modeling assumption is violated.

Finally, we will also consider an even weaker feedback model where a positive utility
gain is only achieved in expectation over user actions:

Et[U(xt, ȳt)− U(xt,yt)] = α(U(xt,y
∗
t)− U(xt,yt))− ξ̄t. (7)

We refer to the above feedback as expected α-informative feedback. In the above equation,
the expectation is over the user’s choice of ȳt given yt under context xt (i.e., under a
distribution Pxt [ȳt|yt] which is dependent on xt).

In the rest of this paper, we use a linear model for the utility function,

U(x,y) = w>∗ φ(x,y), (8)

where w∗ ∈ RN is a parameter vector unknown both to the learning system and users and
φ : X × Y → RN is a known joint feature map known to the system such that3

‖φ(x,y)‖`2 ≤ R, (9)

for any x ∈ X and y ∈ Y. Note that both x and y can be structured objects.

3.2 User Study: Preferences from Clicks

We now validate that reliable preferences as specified in Equation (1) can indeed be inferred
from implicit user behavior. In particular, we focus on preference feedback from clicks in
web-search and draw upon data from a user study (Joachims, Granka, Pan, Hembrooke,
Radlinski, & Gay, 2007). In this study, subjects (undergraduate students, n = 16) were
asked to answer 10 identical questions – 5 informational, 5 navigational – using the Google
search engine. All queries, result lists, and clicks were recorded. For each subject, queries
were grouped into query chains by question4. On average, each query chain contained 2.2
queries and 1.8 clicks in the result lists.

We use the following strategy to infer a ranking ȳ from the user’s clicks: prepend to the
ranking y from the first query of the chain all results that the user clicked throughout the
whole query chain. To assess whether U(x, ȳ) is indeed larger than U(x,y) as assumed in
our learning model, we measure utility in terms of a standard measure of retrieval quality
from Information Retrieval. We use DCG@10(x,y) =

∑10
i=1

r(x,y[i])
log i+1 , where r(x,y[i]) is the

relevance score of the i-th document in ranking y (see Manning, Raghavan, & Schütze,

2. Strictly speaking, the value of the slack variable depends on the choice of α and the definition of utility.
However, for brevity, we do not explicitly show this dependence in the notation.

3. We make a slightly different assumption in Section 5.1.
4. This was done manually, but can be automated with high accuracy (Jones & Klinkner, 2008).

6

Coactive Learning

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

DCG(x,ybar)-DCG(x,y)

Normal Condition
Swapped Condition
Reversed Condition

All Conditions

Figure 1: Cumulative distribution of utility differences between presented ranking y and
click-feedback ranking ȳ in terms of DCG@10 for three experimental conditions
and overall.

2008). To get ground-truth relevance assessments r(x, d), five independent human assessors
(students) were asked to manually rank the set of results encountered during each query
chain. The assessors were also given the true answers for navigational queries. We then
linearly normalize the resulting ranks to a relative relevance score r(x, d) ∈ [0..5] for each
document.

We can now evaluate whether the feedback ranking ȳ is indeed better than the ranking
y that was originally presented, i.e., DCG@10(x, ȳ) > DCG@10(x,y). Figure 1 plots the
Cumulative Distribution functions (CDFs) of DCG@10(x, ȳ) − DCG@10(x,y) for three
experimental conditions, as well as the average over all conditions. All CDFs are shifted far
to the right of 0, showing that preference feedback from our strategy is highly accurate and
informative. Focusing first on the average over all conditions, the utility difference is strictly
positive on ∼ 60% of all queries, and strictly negative on only ∼ 10%. This imbalance is
significant (binomial sign test, p < 0.0001). Among the remaining ∼ 30% of cases where
the DCG@10 difference is zero, 88% are due to ȳ = y (i.e. click only on top 1 or no click).
Note that a learning algorithm can easily detect those cases and may explicitly eliminate
them as feedback. Overall, this shows that implicit feedback can indeed produce accurate
preferences.

What remains to be shown is whether the reliability of the feedback is affected by the
quality of the current prediction, i.e., U(xt,yt). In the user study, some users actually
received results for which retrieval quality was degraded on purpose. In particular, about
one third of the subjects received Google’s top 10 results in reverse order (condition “re-
versed”) and another third received rankings with the top two positions swapped (condition
“swapped”). As Figure 1 shows, we find that users provide accurate preferences across this
substantial range of retrieval quality. Intuitively, a worse retrieval system may make it
harder to find good results, but it also makes an easier baseline yt to improve upon. This
intuition is formally captured in our definition of α-informative feedback. The optimal value
of the α vs. ξ trade-off, however, will likely depend on many application-specific factors,
like user motivation, corpus properties, and query difficulty. In the following, we therefore
present algorithms that do not require knowledge of α, theoretical bounds that hold for any
value of α, and experiments that explore a large range of α.

7

Shivaswamy & Joachims

Algorithm 1 Preference Perceptron.

Initialize w1 ← 0
for t = 1 to T do

Observe xt
Present yt ← argmaxy∈Yw>t φ(xt,y)
Obtain feedback ȳt
Update: wt+1 ← wt + φ(xt, ȳt)− φ(xt,yt)

end for

4. The Preference Perceptron for Coactive Learning

In this section, we start by presenting and analyzing the most basic algorithm for the coac-
tive learning model, which we call the Preference Perceptron (Algorithm 1). The Preference
Perceptron maintains a weight vector wt which is initialized to 0. At each time step t, the
algorithm observes the context xt and presents an object y that maximizes w>t φ(xt,y).
The algorithm then observes user feedback ȳt and the weight vector wt is updated in the
direction φ(xt, ȳt)− φ(xt,yt).

Although the update of the preference perceptron appears similar to the standard per-
ceptron for multi-class classification problems, there are key differences. First, the standard
perceptron algorithm requires the true label y∗ as feedback, whereas much weaker feedback
ȳ suffices for our algorithm. Second, the standard analysis of the perceptron bounds the
number of mistakes made by the algorithm based on margin and the radius of the examples.
In contrast, our analysis bounds a different regret that captures a graded notion of utility.
Further, the standard perceptron mistake bound (Novikoff, 1962) contains R2‖w‖2 while
our bound in the following Theorem contains R‖w‖ where R is as defined in (9).

Theorem 1 The average regret of the preference perceptron algorithm can be upper bounded,
for any α ∈ (0, 1] and for any w∗ as follows:

REGT ≤
1

αT

T∑
t=1

ξt +
2R‖w∗‖
α
√
T

. (10)

Proof First, consider ‖wT+1‖2, we have,

w>T+1wT+1 = w>T wT + 2w>T (φ(xT , ȳT)− φ(xT ,yT))

+ (φ(xT , ȳT)− φ(xT ,yT))>(φ(xT , ȳT)− φ(xT ,yT)

≤ w>T wT + 4R2 ≤ 4R2T.

On line one, we simply used our update rule from algorithm 1. On line two, we used the
fact that w>T (φ(xT , ȳT) − φ(xT ,yT)) ≤ 0 from the choice of yT in Algorithm 1 and that
‖φ(x,y)‖ ≤ R. Further, from the update rule in algorithm 1, we have,

w>T+1w∗ = w>T w∗ + (φ(xT , ȳT)− φ(xT ,yT))>w∗

=

T∑
t=1

(U(xt, ȳt)− U(xt,yt)) . (11)

8

Coactive Learning

We now use the fact that w>T+1w∗ ≤ ‖w∗‖‖wT+1‖ (Cauchy-Schwarz inequality), which
implies

T∑
t=1

(U(xt, ȳt)− U(xt,yt)) ≤ 2R
√
T‖w∗‖.

From the α-informative modeling of the user feedback in (6), we have

α
T∑
t=1

(U(xt,y
∗
t)− U(xt,yt))−

T∑
t=1

ξt ≤ 2R
√
T‖w∗‖,

from which the claimed result follows.

The first term in the regret bound denotes the quality of feedback in terms of violation
of the α-informative feedback. In particular, if the user feedback is strictly α-informative
for some α, then all slack variables in (10) vanish and REGT = O(1/

√
T).

It is trivial to design algorithms (with even better regret) under strict α-informative
assumption when the cardinality of the context set X is finite. One of the interesting aspects
of the above bound (Theorem 1) and the subsequent results is that we can minimize the
regret even when the context xt is different in every step. Thus, |X | could be infinite and
the regret bound still holds.

We note that the bound in Theorem 1 holds for any w∗ and α ∈ (0, 1]. The slacks have
to be based on the corresponding α and w∗.

Though user feedback is modeled via α-informative feedback, the algorithm itself does
not require knowledge of α; α plays a role only in the analysis.

So far, we have characterized user behavior in terms of deterministic feedback actions.
However, if a bound on the expected regret suffices, the weaker model of Expected α-
Informative Feedback from Equation (7) is applicable.

Corollary 2 Under the expected α-informative feedback model, the expected regret (over
user behavior distribution) of the preference perceptron algorithm can be upper bounded as
follows:

E[REGT] ≤ 1

αT

T∑
t=1

ξ̄t +
2R‖w∗‖
α
√
T

. (12)

The above corollary can be proved by following the argument of Theorem 1, but taking
expectations over user feedback:

E[w>T+1wT+1] = E[w>T wT] + E[2w>T (φ(xT , ȳT)− φ(xT ,yT))]

+ ET [(φ(xT , ȳT)− φ(xT ,yT))>(φ(xT , ȳT)− φ(xT ,yT)]

≤ E[w>T wT] + 4R2.

In the above, E denotes expectation over all user feedback ȳt given yt under the context
xt. It follows that E[w>T+1wT+1] ≤ 4TR2.

9

Shivaswamy & Joachims

Algorithm 2 Batch Preference Perceptron.

Initialize w1 ← 0
l← 1
s← 0
for t = 1 to T do

Observe xt
Present yt ← argmaxy∈Yw>l φ(xt,y)
Obtain feedback ȳt
if t == s+ k then

Update: wl+1 ← wl +
∑t

j=s φ(xj , ȳj)− φ(xj ,yj)
l← l + 1
s← t

end if
end for

Applying Jensen’s inequality on the concave function
√
·, we get:

E[w>T w∗] ≤ ‖w∗‖E[‖wT ‖] ≤ ‖w∗‖
√

E[w>T wT].

The corollary follows from the definition of expected α-informative feedback.

4.1 Lower Bound

We now show that the upper bound in Theorem 1 cannot be improved in general with respect
to its scaling with T . In the following lemma, given any Coactive Learning algorithm, we
construct a sequence of examples where, even with α = 1 feedback, the algorithm suffers
an average regret of Ω(1/

√
T).

Lemma 3 For any coactive learning algorithm A with linear utility, there exist xt, objects
Y and w∗ such that REGT of A in T steps is Ω(1/

√
T).

Proof Consider a problem where Y = {−1,+1},X = {x ∈ RT : ‖x‖ = 1}. Define
the joint feature map as φ(x,y) = yx. Consider T contexts e1, . . . , eT such that ej has
only the jth component equal to one and all the others equal to zero. Let y1, . . .yT be
the sequence of outputs of A on contexts e1, . . . , eT . Construct w∗ = [−y1/

√
T , −

y2/
√
T , . . . ,−yT /

√
T]>, we have for this construction ‖w∗‖ = 1. Let the user feedback on

the tth step be−yt. With these choices, the user feedback is always α-informative with α = 1
since y∗t = −yt. Yet, the regret of the algorithm is 1

T

∑T
t=1(w>∗ φ(et,y

∗
t) −w>∗ φ(et,yt)) =

Ω(1√
T

).

4.2 Batch Update

The Preference Perceptron as stated in Algorithm 1 makes an update after every iteration.
In some applications, due to high volumes of feedback, it might not be possible to do an
update that frequently. For such scenarios, it is natural to consider a variant of Algorithm 1
that makes an update every k iterations; the algorithm simply uses wt obtained from the

10

Coactive Learning

Algorithm 3 Generic Template for Coactive Learning Algorithms

Initialize w1

for t = 1 to T do
Observe xt
Present yt ← argmaxy∈Yw>t φ(xt,y)
Obtain feedback ȳt
Perform an update on wt using the gradient of w>(φ(xt, ȳt)−φ(xt,yt)) to obtain wt+1.

end for

previous update until the next update. The type of updates shown in Algorithm 2 are called
mini-batch updates and have been used in distributed online optimization (Dekel, Gilad-
Bachrach, Shamir, & Xiao, 2012). The steps of the batch update algorithm are shown in
Algorithm 2. It is easy to show the following regret bound for batch updates:

Lemma 4 The average regret of the batch preference perceptron algorithm can be upper
bounded, for any α ∈ (0, 1] and for any w∗ as follows:

REGT ≤
1

αT

T∑
t=1

ξt +
2R‖w∗‖

√
k

α
√
T

.

While this lemma implies that mini-batches slow down learning by a factor equal to the
batch size, we will see in Section 6.2.3 that empirically convergence is substantially faster.

5. Deriving Algorithms for Coactive Learning

The Preference Perceptron and the regret it minimizes, as defined in Eqn. (4), is only
one point in the design space of different regret definitions and learning algorithms for
coactive learning. In this section, we will outline a general strategy for deriving coactive
learning algorithms from existing algorithms for online optimization. Furthermore, we will
demonstrate that more general notions of regret are meaningful and feasible in coactive
learning, and derive coactive learning algorithms for general convex and λ-strongly convex
losses.

All coactive learning algorithms that we derive in this section follow the general template
outlined in Algorithm 3. After initializing w1, in each iteration the context xt is observed
and the algorithm presents yt by maximizing its current utility estimate represented by wt.
Once the feedback ȳt is observed, the algorithm simply takes the gradient of w>(φ(xt, ȳt)−
φ(xt,yt)) and uses an update from a standard online convex optimization algorithm to
obtain wt+1 from wt.

In each case, an upper bound on the regret of the proposed algorithm is derived by
using the following strategy. First, we start with a notion of regret that is suited for
coactive learning. We then upper bound this regret by first reducing it to a form such
that results from a standard online convex opimization regret bound can be applied. This
gives a regret bound for the original coactive algorithm in turn. In each case, we use this
template algorithm to derive a specific algorithm. However, we still provide a self-contained
proof (in the appendix) clearly pointing out where we have used the regret bound from a
corresponding online convex optimization algorithm.

11

Shivaswamy & Joachims

Algorithm 4 Exponentiated Preference Perceptron

Intialize wi
1 ← 1

N
η ← 1

2S
√
T

for t = 1 to T do
Observe xt
Present yt ← argmaxy∈Yw>t φ(xt,y)
Obtain feedback ȳt
wi
t+1 ← wi

t exp(−η(φi(xt,yt) − φi(xt, ȳt)))/Zt, where Zt is such that the weights add
to one.

end for

5.1 Exponentiated Preference Perceptron

To illustrate the generic strategy for deriving coactive learning algorithms, we first derive
an exponentiated gradient algorithm for coactive learning that can be used as an alternative
to the Preference Perceptron. The exponentiated gradient algorithm inherits the ability to
learn quickly for sparse weight vectors.

Unlike the additive updates of the Preference Perceptron, the exponentiated gradient
algorithm summarized in Algorithm 4 performs multiplicative updates. This exponentiated
algorithm is closely related to the exponentiated algorithms for classification (Kivinen &
Warmuth, 1997). At the start, it initializes all weights uniformly. Each subsequent update
step has a rate η associated with it. The rate depends on an upper bound on the `∞ norm
of the features (i.e., ‖φ(·, ·)‖`∞ ≤ S) and the time horizon T . After each multiplicative
update, the weights are normalized to sum to one, and the steps of the algorithm repeat.
Since the updates are multiplicative and the weights are initially positive, wt is guaranteed
to remain in the positive orthant for this algorithm. We note that Algoithm 4 is assumed
to know both T and S. There are standard techniques (see Cesa-Biachi & Lugosi, 2006b)
to convert such an algorithm to not have dependence on T , however, such extensions are
not the focus of this paper.

We now provide a regret bound for Algorithm 4. While the regret bounds for Algorithm 1
and Algorithm 2 depended on the `2 norm of the features, the bound for the exponentiated
algorithm depends on the `∞ norm of the features.

Theorem 5 For any w∗ ∈ RN such that ‖w∗‖`1 = 1, w∗ ≥ 0, under (expected) α-
informative feedback the average (expected) regret of the Exponentiated Preference Percep-
tron can be upper bounded as:

REGT ≤
1

αT

T∑
t=1

ξt +
2 log(m)S

α
√
T

+
S

2α
√
T
,

E[REGT] ≤ 1

αT

T∑
t=1

ξ̄t +
2 log(m)S

α
√
T

+
S

2α
√
T
,

where ‖φ(x,y)‖`∞ ≤ S.

12

Coactive Learning

Proof We start with the regret of the coactive learning algorithm as defined in (4):

REGT =
1

T

T∑
t=1

(U(xt,y
∗
t)− U(xt,yt))

=
1

αT

T∑
t=1

(U(xt, ȳt)− U(xt,yt)) +
1

αT

T∑
t=1

ξt

=
1

αT

T∑
t=1

(
w>∗ φ(xt, ȳt)−w>∗ φ(xt,yt)

)
+

1

αT

T∑
t=1

ξt (13)

In the above equation, we have used the definition of α-informative feedback as defined in
Eqn. (6). By viewing Algorithm 4 as an exponentiated online gradient descent algorithm, it
is easy to derive the following regret bound using techniques initially introduced by Kivinen
and Warmuth (1997),

T∑
t=1

(w>t (φ(xt,yt)− φ(xt, ȳt))) ≤
T∑
t=1

(U(xt,yt)− U(xt, ȳt)) + 2 log(N)S
√
T +

S
√
T

2
.

Since we could not find this specific bound in the literature, a self-contained proof is provided
in Appendix A. In the proof, REGT is first upper bounded in terms of the difference between
KL(w||wt+1) and KL(w||wt). A telescoping argument is then used to get the above result.

Observing that w>t (φ(xt,yt)− φ(xt, ȳt)) ≥ 0, we get,

T∑
t=1

(U(xt, ȳt)− U(xt,yt)) ≤ 2 log(N)S
√
T +

S
√
T

2
. (14)

Combining (13) and (14), we obtain the average regret bound. The proof of the expected
regret bound is analogous to that of the Preference Perceptron.

Like the result in Theorem 1, the above result (Theorem 5) also bounds the regret in
terms of the noise in the feedback (first term) and additional terms which converge to zero
at the rate O(1/

√
T). The key difference to Theorem 1 is that the regret bound of the

exponentiated algorithm scales logarithmically with the number of features, but with the
`1-norm of w, which can be advantageous if the optimal w is sparse.

5.2 Convex Preference Perceptron

Generalizing the definition of regret from Eqn. (4), we now allow that at every time step
t, there is an (unknown) convex loss function ct : R → R which determines the loss
ct(U(xt,yt) − U(xt,y

∗
t)) at time t based on the difference in utility between yt and the

optimal y∗t . The functions ct are assumed to be non-increasing. Non-increasing assumption
on ct is based on the intuition that the loss should be higher as U(xt,yt) is farther from
U(xt,y

∗
t). Further, sub-derivatives of the ct’s are assumed to be bounded. Formally, c′t(θ) ∈

[−G, 0] for all t and for all θ ∈ R where c′t(θ) denotes the sub-derivative of ct(·) at θ. The
vector w∗ which determines the utility of yt under context xt is assumed from a closed and

13

Shivaswamy & Joachims

Algorithm 5 Convex Preference Perceptron.

Initialize w1 ← 0
for t = 1 to T do

Set ηt ← 1√
t

Observe xt
Present yt ← argmaxy∈Yw>t φ(xt,y)
Obtain feedback ȳt
Update: w̄t+1 ← wt + ηt(φ(xt, ȳt)− φ(xt,yt))
Project: wt+1 ← arg minu∈B ‖u− w̄t+1‖2

end for

bounded convex set B whose diameter is denoted as |B|. In the case of convex losses, we
consider the following notion of regret:

CREGT :=
1

T

T∑
t=1

ct(U(xt,yt)− U(xt,y
∗
t))−

1

T

T∑
t=1

ct (0) (15)

In the bound (16), ct(0) is the minimum possible convex loss since U(xt,yt)−U(xt,y
∗
t) can

never be greater than zero by definition of y∗t . Hence the above regret compares the loss of
our algorithm with the best loss that could be achieved with a convex loss. Note that, for
the case ct(θ) = −θ, the above definition of regret reduces to our earlier definition of regret
in the linear case (Eqn. (4)).

Algorithm 5 minimizes the average convex loss. There are two differences between this
algorithm and Algorithm 1. First, there is a rate ηt associated with the update at time
t. Second, after every update, the resulting vector w̄t+1 is projected back to the set B.
Algorithm 5 is also closely related to the online convex optimization algorithm propsed
by Zinkevich (2003). However, the online convex optimization algorithm assumes that the
gradient of the loss (ct(·)) is observed after each iteration. Our algorithm doesn’t observe
the gradient directly, but only observes an improved object ȳt after presenting an object
yt.

Our earlier regret bounds were expressed in terms of slack variables ξt. However, here
and in the following section, our bounds will be expressed in terms of the clipped version
of the slack variables defined as ξ+

t := max(0, ξt).

Theorem 6 For the Convex Preference Perceptron under α-informative feedback, for non-
increasing convex losses ct(·) with bounded sub-derivative, we have, for any α ∈ (0, 1] and
any w∗ ∈ B,

CREGT ≤
2G

αT

T∑
t=1

ξ+
t +

G

α

(
|B|

2
√
T

+
|B|
T

+
4R2

√
T

)
. (16)

Similarly, under expected α-informative feedback, we have,

E[CREGT] ≤ 2G

αT

T∑
t=1

ξ̄+
t +

G

α

(
|B|

2
√
T

+
|B|
T

+
4R2

√
T

)
. (17)

14

Coactive Learning

The proof for the above Theorem is provided in the Appendix B. The idea of the proof is
to first divide the time steps into two types depending on the nature of the feedback. This
allows us to upper bound CREGT in terms of

∑T
t=1(wt−w∗)

>(φ(xt,yt)−φ(xt, ȳt)). This
term can further be upper bounded by following the argument from Zinkevich (2003) even
in the Coactive Learning framework.

From the definition of CREGT in Eqn. (15), the above theorem upper bounds the
average convex loss via the minimum achievable loss and the quality of the feedback. Like
the previous result (Theorem 1), under strict α-informative feedback, the average loss ap-
proaches the best achievable loss at O(1/

√
T), albeit with larger constant factors.

In the case of the linear utility bounds in Theorem 1 and Theorem 5, it was sufficient
to have the average of the slack variables be zero to achieve zero regret. However, in the
case of convex losses, our upper bound on regret approaches zero only when the average of
the clipped slack variables is zero.

5.3 Second-Order Preference Perceptron

For a particular class of convex functions, it turns out that we can give much stronger
regret bounds than for general convex losses. The improvement for this special class of losses
parallels improvements in online convex optimization from general convex losses (Zinkevich,
2003) to λ-strongly convex losses (Hazan et al., 2007).

Definition 7 A convex function f : D → R is λ-strongly convex if for all points x and y
in D, the following condition is satisfied for a fixed λ > 0:

f(x) ≤ f(y) +∇f(x)>(x− y)− λ

2
||y − x||2, (18)

where ∇f(x) denotes a sub-derivative at x.

Algorithm 6 shows the Second-order Preference Perceptron for λ-strongly convex losses.
Like our previous algorithms, the Second-order Preference Perceptron also maintains a
weight vector wt, and the step of presenting yt based on a context xt is still the same as
in our previous algorithms. However, in addition to the weight vector, it also maintains an
additional matrix At which is constructed from the outer product of the vector φ(xt, ȳt)−
φ(xt,yt). The update step and the projection steps now involve both At as shown in
Algorithm 6. Algorithm 6 is closely related to the online convex optimization algorithm
proposed by Hazan et al. (2007). However, as we pointed out in the case of Algorithm 5,
our algorithm only observes a user preference feedback after each step unlike online convex
optimization algorithms which observe gradients. It is still possible to prove a regret bound
for the λ-strongly convex case, and we have the following result.

Theorem 8 For the second order preference learning algorithm, for (expected) λ-strongly
convex, non-increasing functions ct, with bounded sub-derivatives, we have,

CREGT ≤
γ

2Tα2

T∑
t=1

ξ+
t

2
+

2G

Tα

T∑
t=1

ξ+
t +

Gε|B|
Tα

+
GN

2Tγα
log

(
4R2Tγ

ε
+ 1

)
, (19)

E[CREGT] ≤ γ

2Tα2

T∑
t=1

ξ̄+2
t +

2G

Tα

T∑
t=1

ξ̄+
t +

Gε|B|
Tα

+
GN

2Tγα
log

(
4R2Tγ

ε
+ 1

)
, (20)

15

Shivaswamy & Joachims

Algorithm 6 Second-order Preference Perceptron.

Intialize w1 ← 0
A0 ← εI
γ ← λ/G.
for t = 1 to T do

Observe xt
Present yt ← argmaxy∈Yw>t φ(xt,y)
Obtain feedback ȳt
At ← At−1 + γ[φ(xt, ȳt)− φ(xt,yt)][φ(xt, ȳt)− φ(xt,yt)]

>

Update: w̄t+1 ← wt +A−1
t [φ(xt, ȳt)− φ(xt,yt)]

Project: wt+1 = arg minw∈B(w̄t+1 −w)>At(w̄t+1 −w)
end for

where, ε > 0 is an initialization parameter, as shown in Algorithm 6.

We prove the above Theorem in the Appendix C. Like in the proof of Theorem 6, we divide
time steps into two types. Starting with this, it is possible to upper bound CREGT to such
a form that the resulting terms can be upper bounded using similar arguments as that for
online strongly convex optimization (Hazan et al., 2007).

When user feedback is strictly α-informative for some α and some w∗ ∈ B, the first two
terms of the regret bound (19) result in an O(log T

T) scaling with T . However, there is a
linear dependence on the dimensionality of the joint feature map in the regret bound for
the Second-order Preference Perceptron algorithm.

Even though it appears like we need to invert the matrix At in the Second-order Pref-
erence Perceptron, this can be avoided since the updates on At are of rank one. By the
Woodbury matrix inversion lemma, we have:

A−1
t = (At−1 + γ[φ(xt, ȳt)− φ(xt,yt)][φ(xt, ȳt)− φ(xt,yt)]

>)>)−1

= A−1
t−1 −

A−1
t−1[φ(xt, ȳt)− φ(xt,yt)][φ(xt, ȳt)− φ(xt,yt)]

>A−1
t−1

1/(γ) + [φ(xt, ȳt)− φ(xt,yt)]>A
−1
t−1[φ(xt, ȳt)− φ(xt,yt)]

.

Thus, in practice, the Second-order Preference Perceptron can update both At and
Bt in each iteration. Nevertheless, the projection step to obtain wt+1 involves solving a
quadratically-constrained quadratic program where B is a ball of fixed radius, which still
takes O(N3) time. Hence, the Second-order Preference Perceptron is computationally more
demanding than the Convex Preference Perceptron. As we show in the experiments, the
Second-order Preference Perceptron might be still quite useful for low-noise data.

6. Experiments

We empirically evaluate our Coactive Learning algorithms on two real-world datasets. The
two datasets differ in the nature of prediction and feedback. On the first dataset, the
algorithms operate on structured objects (rankings) whereas on the second dataset, atomic
items (movies) were presented and received as feedback.

16

Coactive Learning

6.1 Datasets And User Feedback Models

First, we provide a detailed description of the two datasets that were used in our experi-
ments. Along with this, we provide the details of the strategies that we used on each dataset
for generating user feedback.

6.1.1 Structured Feedback: Web-Search

Our first dataset is a publicly available dataset from Yahoo! (Chapelle & Chang, 2011) for
learning to rank in web-search. This dataset consists of query-url feature vectors (denoted as
xqi for query q and URL i), each with a relevance rating rqi that ranges from zero (irrelevant)
to four (perfectly relevant). To pose ranking as a structured prediction problem, we defined
our joint feature map as follows:

w>φ(q,y) =

5∑
i=1

w>xqyi

log(i+ 1)
. (21)

In the above equation, y denotes a ranking such that yi is the index of the URL which is
placed at position i in the ranking. Thus, the above measure considers the top five URLs
for a query q and computes a score based on graded relevance. Note that the above utility
function defined via the feature-map is analogous to DCG@5 (see, Manning et al., 2008)
after replacing the relevance label with a linear prediction based on the features.

For query qt at time step t, the Coactive Learning algorithms present the ranking yqt
that maximizes w>t φ(qt,y). Note that this merely amounts to sorting documents by the
scores w>t xqti , which can be done very efficiently. The utility regret in Eqn. (4), based on

the definition of utility w>∗ φ(q,y) is given by 1
T

∑T
t=1 w>∗ (φ(qt,y

qt∗)−φ(qt,y
qt)). Here yqt∗

denotes the optimal ranking with respect to w∗, which we consider to be the best least
squares fit to the relevance labels from the features using the entire dataset. We obtain
yqt∗ from Eqn. 3, that is, yqt∗ = argmaxy∈Ȳw>∗ φ(qt,y). In all our experiments, query
ordering was randomly permuted twenty times and we report average and standard error
of the results.

We used the following two user models for generating simulated user feedback in our
experiments. The first feedback model is an idealized version of feedback whereas the second
feedback is based directly on relevance labels that are available in the dataset:

• Strict α-informative feedback: In this model, the user is assumed to provide
strictly α-informative feedback at a given α value (i.e., slacks zero). Given the pre-
dicted ranking yt, the user would go down the list until she found five URLs such that,
when placed at the top of the list, the resulting ȳt satisfied the strictly α-informative
feedback condition w.r.t. the optimal w∗. This model assumes that the user has
access to w∗ hence it is an idealized feedback.

• Noisy feedback at depth k: In this feedback model, given a ranking for a query,
the user would go down the list inspecting the top k URLs (or all the URLs if the list
is shorter) for a specified k value. Five URLs with the highest relevance labels (rqi)
are placed at the top five locations in the user feedback. Note that this produces noisy
feedback since no linear model can perfectly fit the relevance labels on this dataset.

17

Shivaswamy & Joachims

6.1.2 Item Feedback: Movie Recommendation

In contrast to the structured prediction problem in the previous dataset, we considered a
second dataset with atomic predictions, namely movie recommendation. In each iteration,
a movie is presented to the user, and the feedback consists of a single movie as well. We
used the MovieLens dataset from grouplense.org which consists of a million ratings over
3900 movies as rated by 6040 users. The movie ratings range from one to five.

We randomly divided users into two equally sized sets. The first set was used to obtain
a feature vector xj for each movie j using the “SVD embedding” method for collaborative
filtering (see Bell & Koren, 2007, Eqn. (15)). The dimensionality of the feature vectors
and the regularization parameters were chosen to optimize cross-validation accuracy on the
first dataset in terms of squared error. For the second set of users, we then considered the
problem of recommending movies based on the movie features xj . This experiment setup
simulates the task of recommending movies to a new user based on movie features from old
users.

For each user i in the second set, we found the best least squares approximation wT
i∗xj

to the user’s utility functions on the available ratings. This enabled us to impute utility
values for movies that were not explicitly rated by this user. Furthermore, it allowed us
to measure regret for each user as 1

T

∑T
t=1 w>i∗(xt∗ − xt), which is the average difference in

utility between the recommended movie xt and the best available movie xt∗. We denote the
best available movie at time t by xt∗ which is obtained from Eqn. 3. In this experiment,
once a user gave a particular movie as feedback, both the recommended movie and the
feedback movie were removed from the set of candidates for subsequent recommendations.
In all the experiments we report (average) regret values averaged over all 3020 users in the
test set.

To simulate user behavior, we considered the following two feedback models on this
dataset:

• Strict α-informative feedback: As in the previous dataset, in this model, the user
is assumed to provide strictly α-informative feedback at a given α value (i.e., slacks
zero). Given the predicted movie yt, the user is assumed to watch the movie if it
already has the highest rating in the remaining corpus of movies. If not, the user
picks another movie from the corpus with lowest utility that still satisfies strict α-
informative assumption. This model again assumes that the user has access to w∗,
hence it is an idealized feedback.

• Noisy feedback: In this feedback model, given a movie y, the user is assumed to
have access to either the actual rating of the movies (when available) or is assumed to
round the imputed rating to the nearest legal rating value. We used two sub-strategies
by which the user provides feedback. In better feedback, the user provides ȳ such
that it has the smallest rating (actual rating or rounded rating) but strictly better
rating than that of y. In best feedback, the user provides ȳ such that it has the
highest rating (actual rating or rounded rating) in the remaining corpus. There could
be multiple movies satisfying the above criteria, and ties were broken uniformly at
random among such movies. Note that this feedback model results in a noisy feedback
due to rounding of movie ratings to discrete values.

18

Coactive Learning

6.2 Preference Perceptron

In the first set of experiments, we analyze the empirical performance and scaling behavior
of the basic Preference Perceptron Algorithm and its variants.

6.2.1 Strong Versus Weak Feedback

The goal of the first experiment to explore how the regret of the algorithm changed with feed-
back quality. To get feedback at different quality levels α, we used strict α-informative
feedback for various α values.

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t

a
v
g
.
d
c
g
 r

e
g
re

t

α = 0.1

α = 0.5

α = 1.0

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

t

a
v
g
.
u
ti
l
re

g
re

t

α = 0.1

α = 0.5

α = 1.0

Figure 2: Regret based on strict α-informative feedback for various α values for web-
search (left) and movie recommendation (right).

Figure 2 shows the results of this experiment for three different α values. Overall, regret
is typically substantially reduced after only tens or hundreds of iterations. As expected,
the regret for α = 1.0 is lower compared to the regret for lower α values. Note, however,
that the difference between the two curves is much smaller than a factor of ten. Also note
that the differences are less prominent in the case of web-search. This is because strictly
α-informative feedback is also strictly β-informative feedback for any β ≤ α. So, in our
user feedback model, we could be providing much stronger feedback than that required by
a particular α value. As expected from the theoretical bounds, since the user feedback is
based on a linear model with no noise, utility regret approaches zero in all the cases. Note
that we show standard error in the plots, giving an indication of statistical significance. In
the left plots in Figure 2, the standard errors are high at lower iterations but become lower
with more iterations. In some plots in the rest of the paper, the error bars are small and
may be difficult to visually identify.

In the rest of this paper, for strict α-informative feedback, we consider α = 0.5
unless we explicitly mention otherwise.

6.2.2 Noisy Feedback

In the previous experiment, user feedback was based on actual utility values computed from
the optimal w∗. We next study how regret changes with noisy feedback where user behavior

19

Shivaswamy & Joachims

does not follow a linear utility model. For the web-search dataset, we use noisy feedback
at depths 10 and 25, and for the movie dataset we use noisy feedback with both the
better and the best variant of it.

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

a
v
g
.
u
ti
l
re

g
re

t

depth=10

depth=25

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

t

a
v
g
.
u
ti
l
re

g
re

t

better

best

Figure 3: Regret based on noisy feedback for web-search (left) and movie recommendation
(right).

The results for this experiment are shown in Figure 3. The first observation to make is
that in the case of web-search, the regret values now do not converge to zero. Similarly, in
the case of movie recommendation the regret values are higher than those in the previous
experiment. These results are in line with our theory which shows regret converging to
average slack variables when the user does not provide strict α informative feedback for any
α. Interestingly, in the case of web-search the average regret is slightly higher when the
user goes to greater depth in providing feedback. This is due to the fact that the relevance
labels in this dataset are noisy – when the user maximizes (noisy) utility over a larger set of
URLs, the selection of the (true) utility maximizers becomes less reliable, which degrades
user feedback quality.

In the rest of this paper, for web-search we consider noisy feedback with depth=10. In
the case of movie recommendation, we consider the better version of the noisy feedback
unless we explicitly mention otherwise.

6.2.3 Batch Updates

In this section, we consider the Batch Preference Perceptron algorithm (Algorithm 2). Its
regret bound from Section 4.2 scales by a factor

√
k under strict α-informative feedback,

if the update is made only every k iterations of the algorithm. We now verify whether
empirical performance scales as suggested by the bound. For both web-search and movies,
we considered both strict α-informative feedback and noisy feedback. For both types
of feedback, we use the Batch Perceptron Algorithm with various values of k and report the
resulting average regret.

The results of these experiments are shown in Figure 4 and Figure 5. As expected,
as the value of k becomes smaller, regret converges faster. However, we observe that the

20

Coactive Learning

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

a
v
g
.
u
ti
l
re

g
re

t

k = 1

k = 10

k=20

k=50

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

t

a
v
g
.
u
ti
l
re

g
re

t

k=1

k=10

k=20

k=50

Figure 4: Regret versus time based on batch updates with strict α-informative feedback
for web-search (left) and movie recommendation (right).

10
0

10
1

10
2

10
3

10
4

0.4

0.6

0.8

1

1.2

1.4

1.6

t

a
v
g
.
u
ti
l
re

g
re

t

k = 1

k = 10

k=20

k=50

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

t

a
v
g
.
u
ti
l
re

g
re

t

k=1

k=10

k=20

k=50

Figure 5: Regret versus time based on batch updates with noisy feedback for web-search
(left) and movie recommendation (right).

empirical scaling with k is substantially better than the
√
k factor suggested by Lemma 4.

These results show the feasibility of using Coactive Learning algorithms in systems where
it might be impractical to do an update after every iteration.

6.2.4 Expected User Feedback

The user feedback was deterministic in our experiments so far. In this sub-section, we con-
sider probabilistic feedback and study the behavior of the Preference Perceptron algorithm.
Recall that we provided an upper bound on the expected regret for expected user feedback
in Corollary 2.

To provide α-informative feedback under expectation, we consider the following strategy.
Given an object yt on context xt, the user would first generate deterministic feedback yt

21

Shivaswamy & Joachims

following a strict α-informative feedback model (α = 0.5 for web-search and α = 1.0
for movie recommendation).5 In addition, we consider five randomly generated objects
as feedback. We then put uniform probability mass over the randomly generated objects
and remaining mass over the deterministic feedback such that the user feedback is still
α-informative at α = 0.5 in expectation.

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

a
v
g
.
u
ti
l
re

g
re

t

Expct. feedback

Det. feedback

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

t
a
v
g
.
u
ti
l
re

g
re

t

Expct. Feedback

Det. Feedback

Figure 6: Expected feedback versus deterministic feedback on web-search (left) and movie
recommendation (right).

The results for this experiment are shown in Figure 6. As a reference, we also plot the
regret curve with deterministic α-informative feedback with α = 0.5. It can be seen that
there is not much difference between deterministic and expected feedback at higher numbers
of iterations. It can also be seen that the regret converges to zero even with α-informative
feedback in expectation as suggested by Corollary 2.

6.2.5 Comparison with Ranking SVM

We now compare our algorithms against several baselines, starting with a conventional
Ranking SVM (Joachims, 2002) that is repeatedly trained. At each iteration, the previous
SVM model is used to present a ranking to the user (yqtsvm). The user returns a ranking
(ȳqtsvm) based on strict α-informative feedback in one experiment and based on noisy
feedback in the other. The pairs of examples (qt,y

qt
svm) and (qt, ȳ

qt
svm) are used as training

pairs for the ranking SVM. Note that training a ranking SVM after each iteration would be
prohibitive expensive, since it involves solving a quadratic program and cross-validating the
regularization parameter C. Thus, we retrained the SVM whenever 10% more examples
were added to the training set. The first training was after the first iteration with just
one pair of examples (starting with a random yq1), and the C value was fixed at 100 until
there were 50 pairs of examples, when reliable cross-validation became possible. After there
were more than 50 pairs in the training set, the C value was obtained via five-fold cross-

5. Note that, in the case of web-search, our user model can provide strictly β-informative where β larger
than 0.5.

22

Coactive Learning

validation. Once the C value was determined, the SVM was trained on all the training
examples available at that time. The same SVM model was then used to present rankings
until the next retraining.

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

a
v
g
.
u
ti
l
re

g
re

t

SVM

Pref. Perceptron

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

t

a
v
g
.
u
ti
l
re

g
re

t

SVM

Pref. Perceptron

Figure 7: Preference Perceptron versus Ranking SVM with strict α-informative feed-
back on web-search (left) and movie recommendation (right).

10
0

10
1

10
2

10
3

10
4

0.4

0.6

0.8

1

1.2

1.4

1.6

t

a
v
g
.
u
ti
l
re

g
re

t

SVM

Pref. Perceptron

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

t

a
v
g
.
u
ti
l
re

g
re

t

SVM

Pref. Perceptron

Figure 8: Preference Perceptron versus Ranking SVM with noisy feedback on web-search
(left) and movie recommendation (right).

The results of this experiment are shown in Figure 7 and Figure 8. In the case of
strict α-informative feedback, the Preference Perceptron performed much better than
the SVM for the movie recommendation, and comparably for web search. In the case of
noisy feedback, the Preference Perceptron performs significantly better than the SVM
over most of the range on both the datasets. While it took around 20 minutes to run the
Preference Perceptron experiment, it took about 20 hours to run the SVM experiment on

23

Shivaswamy & Joachims

web-dataset for each permutation of the dataset. Similary, on the movie recommendation
task it took around 125 seconds to run the preference perceptron for each user while it took
around 260 seconds to run the SVM for each user. These results show that the preference
perceptron can perform on par or better than SVMs on these tasks at a fraction of the
computational cost.

6.2.6 Comparison with Dueling Bandit

As a second baseline, we compare the Preference Perceptron algorithm with the dueling
bandit approach of Yue and Joachims (2009). In each step, the dueling bandit algorithm
makes a comparison between a vector w and a perturbed version of it w1 (in a random
direction u such that w1 = w + γu). The results produced by these two weight vectors are
assessed by the user through techniques such as interleaving (Radlinski, Kurup, & Joachims,
2008), providing a preference between w and w1. The preference feedback determines the
update that the dueling bandits algorithm makes to w. If w is preferred, it is retained
for the next round. If w1 is preferred, a small step of length δ is taken in the direction of
perturbation u.

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t

a
v
g
.
u
ti
l
re

g
re

t

Dueling Bandit

Pref. Perceptron

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t

a
v
g
.
u
ti
l
re

g
re

t

Dueling Bandit

Pref. Perceptron

Figure 9: Preference Perceptron versus Dueling Bandit on web-search. The left plot is based
on strict α-informative feedback, the right plot shows noisy feedback.

In our first experiment on web-search, in each step, we first obtained two ranked lists
based on w and w1. The features used to obtain these ranked lists were identical to those
used for Preference Perceptron. The two rankings were then interleaved. The interleaved
ranking was presented to a user. In the first experiment, the user provided strict α-
informative feedback on the interleaved ranking. In the second experiment, the user
provided noisy feedback. Depending on the feedback, we inferred which of the two rank-
ings was preferred using the Team-Game method proposed by Radlinski et al. (2008). When
w was preferred or when there was a tie, no step was taken. When w1 was preferred, a
step of length δ was taken in the direction u. The regret of the dueling bandit algorithm
was measured by considering the utility of the interleaved ranking. Unlike the Preference
Perceptron algorithm, the dueling bandit algorithm has two parameters (γ and δ) that need

24

Coactive Learning

to be tuned. We considered 25 values for these parameters (5x5 grid) and simply chose the
best parameter values of the dueling bandits algorithm in hindsight.

The results for this experiment are shown in Figure 9. Despite the advantage of setting
the parameters to best possible values, it can be seen that dueling bandit algorithm performs
significantly worse compared to the preference perceptron algorithm by orders of magnitude.
For example, the performance of the dueling bandit at around 28,000 iterations is matched
by preference perceptron at less than 100 iterations with both types of feedback. This is
not surprising, since the dueling bandit algorithm basically relies on random vectors to
determine the direction in which a step needs to be taken. In the Coactive Learning model,
the user feedback provides a (better than random) direction to guide the algorithm.

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

t

a
v
g
.
u
ti
l
re

g
re

t

Dueling Bandit

Pref. Perceptron

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

t

a
v
g
.
u
ti
l
re

g
re

t

Dueling Bandit

Pref. Perceptron

Figure 10: Preference Perceptron versus Dueling Bandit on movie recommendation. The
left plot is based on utility values whereas the right plot shows results with
rounded values.

Similarly, we also conducted a comparison with the dueling bandit algorithm on the
movie recommendation dataset. However, unlike the web-search experiment, the dueling
bandit model is somewhat unnatural on this dataset in our experimental setup, since inter-
leaving two rankings is natural whereas interleaving two items is not. We therefore consider
a different setup. Two movies were obtained based on w and w1 for the dueling bandit
algorithm. User feedback was to merely indicate which of these two movies has a higher
rating. In the noisy case, user feedback was based on the actual rating or the rounded rat-
ing. In the noise-free case, user feedback was based on the utility values. In either case, the
utility of dueling bandit was considered to be the average utility of the two movies selected
for comparison.

The performance of the dueling bandit algorithm in this experiment is shown in Fig-
ure 10. For the Preference Perceptron algorithm, regret curves for strict α-informative
feedback (α = 0.5) and better noisy feedback are also shows as reference. It can be
seen that the dueling bandit algorithm again performs substantially worse compared to the
Preference Perceptron algorithm.

25

Shivaswamy & Joachims

6.3 Exponentiated versus Additive Updates

In this experiment, we compare the exponentiated algorithm (Algorithm 4) with the additive
Preference Perceptron algorithm. For the exponentiated algorithm, all the components of
we
∗ must be non-negative.6 We obtained a non-negative we

∗ as follows:

[we
∗]i =

{
min(0, [w∗]i) 1 ≤ i ≤ m,
max(0,−[w∗]i−m) m+ 1 ≤ i ≤ 2m.

(22)

In the above equation, [we
∗]i denotes the ith component of we

∗. Moreover, we also modified
the joint feature map for the exponentiated algorithm as follows:

[φe(x,y)]i =

{
+[φ(x,y)]i 1 ≤ i ≤ m
−[φ(x,y)]i−m m+ 1 ≤ i ≤ 2m

(23)

With the above modifications, we
∗ will have only non-negative components and more-

over, it is easy to verify that we
∗
>φe(x,y) = w>φ(x,y). This makes the regret of the

exponentiated algorithm directly comparable with the regret of the additive algorithm.

The exponentiated algorithm has a fixed rate parameter η that inversely depends on
the time horizon T . When T is large, η is small. In this situation, consider the update in
Algorithm 4:

wi
t+1 ← wi

t exp(η(φi(xt, ȳt)− φi(xt,yt)))/Zt.

Since, η is small, we can approximate the exponential term in the above equation with
a first order approximation:

exp(η(φi(xt, ȳt)− φi(xt,yt))) ≈ 1 + η(φi(xt, ȳt)− φi(xt,yt)).

Thus the exponentiated updates resemble the updates of the additive algorithm up to
a normalization factor. Despite the normalization factor, we empirically observed the be-
havior of the two algorithms to be nearly identical (though not exact). We thus empirically
evaluated the exponentiated algorithm with a variable rate parameter ηt = 1

2S
√
t

at time t.

Note that this is an empirical result without formal theoretical guarantees for this variable
rate.

Results of this experiment are shown in Figure 11 and Figure 12 for strict α-informative
feedback and noisy feedback respectively. It can be seen that the exponentiated algo-
rithm tends to performs slightly better than the additive algorithm for small number of
iterations. As the time horizon becomes large, the two algorithms seem to have comparable
performance in most cases.

6.4 Minimizing Convex Losses

In this section, we empirically evaluate the Convex Preference Perceptron (Algorithm 5)
and the Second-Order Preference Perceptron (Algorithm 6).

6. We put a superscript ’e’ to distinguish the joint feature map and w that we used in our experiments for
the exponentiated algorithm.

26

Coactive Learning

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

a
v
g
.
u
ti
l
re

g
re

t

Exponentiated

Pref. Perceptron

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

t

a
v
g
.
u
ti
l
re

g
re

t

Exponentiated

Pref. Perceptron

Figure 11: Exponentiated versus Additive with strict α-informative feedback on web-
search (left) and movie recommendation (right).

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

a
v
g
.
u
ti
l
re

g
re

t

Exponentiated

Pref. Perceptron

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

t

a
v
g
.
u
ti
l
re

g
re

t

Exponentiated

Pref. Perceptron

Figure 12: Exponentiated versus Additive with noisy feedback on web-search (left) and
movie recommendation (right).

6.4.1 Convex Perceptron Versus Second-Order Algorithm

The regret bounds from Section 5 show that one can get lower regret for λ-strongly convex
functions using a second-order algorithm, while the first-order Convex Perceptron applies
to general convex functions. In this section, we evaluate the relative performance of the
first-order and the second-order algorithms empirically. For this purpose, we considered the
quadratic loss c(θ) = (θ −M)2 where M is the largest utility value on any possible φ(x,y)
with any w in a convex ball of radius ‖w∗‖. It can be verified this loss function is λ-strongly
convex. B was set to 100 for both the algorithms for both the datasets.

27

Shivaswamy & Joachims

10
0

10
1

10
2

10
3

10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

t

Q
u

a
d

 r
e

g
re

t

Second Order

Convex Perceptron

10
0

10
1

10
2

10
3

10
4

0

100

200

300

400

500

600

t

U
ti
l
re

g
re

t

Second Order

Convex Perceptron

Figure 13: Cumulative regret of the convex perceptron and the second order convex per-
ceptron for web-search.

10
0

10
1

10
2

10
3

0

0.005

0.01

0.015

0.02

0.025

0.03

t

Q
u
a
d
.
re

g
re

t

Second Order

Convex Perceptron

10
0

10
1

10
2

10
3

0

50

100

150

200

250

t

U
ti
l
re

g
re

t

Second Order

Convex Perceptron

Figure 14: Cumulative regret of the convex perceptron and the second order convex per-
ceptron for movie recommendation.

In the first set of experiments, we considered strict α-informative feedback. We ran
both the second-order algorithm as well as the Convex Preference Perceptron algorithm 5.
The γ value in the second order perceptron was simply set to one. We recorded the REGT
and CREGT values for both the methods. Note that REGT corresponds to the utility
regret as defined in 4.

Results of this experiment are shown in Figure 13 and Figure 14. To demonstrate
the qualitative difference between the two algorithms, we plot cumulative regret (i.e. T ×
REGT and T × CREGT) in these figures. The cumulative regret of the second-order
algorithm is linear on a log-scale. This shows that the convergence of the regret is indeed

28

Coactive Learning

logarithmic, compared to the much slower convergence of the Convex Preference Perceptron.
Interestingly, even the cumulative regret based on raw utility values empirically shows a
similar behavior. This is purely an empirical result, since theoretically, O(log(T)/T) average
regret holds only for strongly convex losses and the linear loss is not strongly convex.

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
−3

10
−2

10
−1

10
0

γ

Q
u
a
d
 r

e
g
re

t

weak@5000

strong@5000

weak@15000

strong@15000

weak@25000

strong@25000

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
2

10
3

10
4

γ

U
ti
l.
 r

e
g
re

t

weak@5000

strong@5000

weak@15000

strong@15000

weak@25000

strong@25000

Figure 15: Sensitivity of the second order preference perceptron algorithm to the parameter
value γ.

10
−4

10
−2

10
0

10
2

10
4

10
−1.7

10
−1.6

10
−1.5

10
−1.4

10
−1.3

10
−1.2

γ

Q
u
a
d
.
re

g
re

t

weak@5000

strong@5000

weak@15000

strong@15000

weak@25000

strong@25000

10
−4

10
−2

10
0

10
2

10
4

10
2.1

10
2.2

10
2.3

10
2.4

10
2.5

γ

U
ti
l.
 r

e
g
re

t

weak@5000

strong@5000

weak@15000

strong@15000

weak@25000

strong@25000

Figure 16: Sensitivity of the second order preference perceptron algorithm to the parameter
value γ on movie recommendation.

In the previous experiment, we fixed the γ value in the second-order algorithm to one.
We now study the sensitivity of the second-order algorithm to the value of this parameter.
Figures 15 and 16 show regret values after a given number of iterations when γ is swept
over a range of values. The dotted lines show the performance of the Convex Preference
Perceptron for comparison. In the case of web-search, there is a wide range of parameter

29

Shivaswamy & Joachims

values where the performance of the algorithm is good. As the parameter γ takes an extreme
value on either side, the performance of the algorithm deteriorates. The range of suitable
γ values is much broader for the web-search dataset than for movie recommendation. It is
interesting to note that both the algorithms performed empirically best at γ = 1 among the
values that were tried.

10
0

10
1

10
2

10
3

10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

t

Q
u

a
d

 r
e

g
re

t

Second Order

Convex Perceptron

10
0

10
1

10
2

10
3

10
4

0

2000

4000

6000

8000

10000

12000

14000

t
U

ti
l
re

g
re

t

Second Order

Convex Perceptron

Figure 17: Strong convex versus weak convex with noisy feedback on web-seach.

10
0

10
1

10
2

10
3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

t

Q
u
a
d
.
re

g
re

t

Second Order

Convex Perceptron

10
0

10
1

10
2

10
3

0

200

400

600

800

1000

1200

1400

t

U
ti
l
re

g
re

t

Second Order

Convex Perceptron

Figure 18: Strong convex versus weak convex with noisy feedback on movie recommenda-
tion.

We also tested the convex algorithms under noisy feedback. Both regret bounds con-
tain the slack terms on the right hand side. Thus, when user feedback is not α-informative
for any α, the regret bounds for the second-order algorithm and the first-order algorithm
are both dominated by the slack variables. The empirical performance of the two algo-
rithms under noisy feedback are shown in Figures 17 and 18. In the case of web-search,
the results for the second-order algorithm and the first-order algorithm are nearly identi-

30

Coactive Learning

cal. However, in the case of movie recommendation, there is still some advantage to the
second-order algorithm.

In summary, the second-order algorithm performs substantially superior under no-noise
circumstances. In the presence of noise in the feedback, the two algorithms do not show
drastically different behaviors.

7. Conclusions

We proposed Coactive Learning as a new model of online learning with preferences that is
especially suited for implicit user feedback. Unlike most supervised learning approaches,
Coactive Learning algorithms do not require optimal labels, but merely (noisy) feedback
that improves over the prediction. Our model, where no cardinal utilities are observed,
sits between the experts and the bandits settings, and we argue that Coactive Learning is
applicable to a wide range of systems that aim to optimize themselves based on observable
user actions.

We provide several algorithms that provably optimize regret in the Coactive Learning
framework, and we empirically validate the effectiveness of the proposed framework on
web-search ranking and movie recommendation datasets with simulations of both noisy and
noise-free feedback. A recurring theme in this paper is that a wide variety of conventional
online learning algorithms can be converted into Coactive Learning algorithms, despite the
differences in the learning model itself, in the nature of feedback and in the notion of regret.
We conjecture that many other online learning algorithms could similarly be converted to
practically useful Coactive Learning algorithms.

The Coactive Learning model, the algorithms we proposed, and the ability to use weak
feedback from observable user behavior offer a wide range of opportunities for new learning
approaches to application problems ranging from natural language processing and infor-
mation retrieval to robotics. There are also several opportunities for further developing
algorithms for the Coactive Learning model. For example, our algorithm for convex loss
minimization assume only that the gradient of the convex losses are bounded. However,
in most practical situations, the convex loss to be minimized is known apriori. It is an
interesting research direction to study whether there are algorithms that can utilize the
gradient of the loss to perform better either theoretically or empirically. Another question
is whether better algorithms exist for special cases of the linear utility model. Our lower
bound is based on an argument where the dimensionally of the joint feature maps grow
with the given horizon T . When the dimensionality of the joint feature map is fixed, an
interesting research question is: are there algorithms with better regret than our proposed
algorithms?

Acknowledgments

This work was funded in part under NSF awards IIS-0905467, IIS-1247637, and IIS-1142251.
This was work was done when Pannaga Shivaswamy was a postdoctoral associate at Cornell
University. We thank Peter Frazier, Bobby Kleinberg, Karthik Raman, Tobias Schnabel and

31

Shivaswamy & Joachims

Yisong Yue for helpful discussions. We also thank anonymous reviewers for their thoughtful
comments on an earlier version of this paper.

Appendix A. Proof of Theorem 5

Proof We look at how the KL divergence between w and wt evolves,

KL(w||wt)−KL(w||wt+1) =
N∑
i=1

wi log(wi
t+1/w

i
t)

=

N∑
i=1

wi(η(φi(xt, ȳt)− φi(xt,yt)))− log(Zt)

= ηw>(φ(xt, ȳt)− φ(xt,yt))− log(Zt). (24)

On the second line, we pulled out log(Zt) from the sum since
∑N

i=1 wi = 1. Now, consider
the last term in the above equation. Denoting φi(xt, ȳt)−φi(xt,yt) by ∆iφt for brevity, we
have, by definition,

log(Zt) = log

(
N∑
i=1

wi
t exp(η∆iφt)

)

≤ log

(
N∑
i=1

wi
t(1 + η∆iφt + η2∆iφt

2
)

)
≤ log

(
1 + ηw>t ∆φt + η2S2

)
≤ ηw>t ∆φt + η2S2. (25)

On the second line we used the fact that exp(x) ≤ 1 + x+ x2 for x ≤ 1. The rate η ensures
that η(∆iφ) ≤ 1. On the last line, we used the fact that log(1 + x) ≤ x. Combing (24) and
(25), we get,

(w −wt)
>∆φt ≤

KL(w||wt)−KL(w||wt+1)

η
+ ηS2.

Adding the above inequalities, we get:

T∑
t=1

(w −wt)
>(φ(xt, ȳt)− φ(xt,yt)) ≤

T∑
t=1

KL(w||wt)−KL(w||wt+1)

η
+
T−1∑
t=1

ηS2.

≤ KL(w||w0)

η
+ ηS2T.

Rearranging the above inequality, and substituting the value of η from Algorithm 4, we
get:

T∑
t=1

(U(xt, ȳt)− U(xt,yt)) ≤
T∑
t=1

w>t (φ(xt, ȳt)− φ(xt,yt)) + 2 log(N)S
√
T +

S
√
T

2

≤ 2 log(N)S
√
T +

S
√
T

2
.

32

Coactive Learning

In the above, we also used the fact that KL(w||w1) ≤ log(N) since w1 is initialized uni-
formly. Moreover, from Hölder’s inequality, we obtained

w>t φ(xt,yt) ≤ ‖wt‖`1‖φ(xt,yt)‖`∞ ≤ S.

The above inequality along with α-informative feedback gives the claimed result.

Appendix B. Proof of Theorem 6

Proof First, we divide the set of time steps into two different sets based on the nature of
the feedback:

I := {t : U(xt, ȳt)− U(xt,yt)) ≥ 0; 1 ≤ t ≤ T},
J := {t : U(xt, ȳt)− U(xt,yt)) < 0; 1 ≤ t ≤ T}.

For brevity we denote φ(xt,a)− φ(xt,b) by7 ∆(a,b) in the rest of this proof. We start
by considering the following term for a single time step t:

ct(U(xt,yt)− U(xt,y
∗
t))− ct(0)

≤ct(U(xt,yt)− U(xt,y
∗
t))− ct

(
w>t ∆(yt, ȳt)

α

)
=ct

(
w>∗ ∆(yt, ȳt)

α
− ξt
α

)
− ct

(
w>t ∆(yt, ȳt)

α

)
≤
(

(w∗ −wt)
>∆(yt, ȳt)

α
− ξt
α

)
c′t

(
w>∗ ∆(yt, ȳt)

α
− ξt
α

)

≤

(w>t ∆(yt, ȳt) + ξ+

t −w>∗ ∆(yt, ȳt))G/α t ∈ I

(w>t ∆(yt, ȳt) + ξ+
t)G/α t ∈ J.

In the above inequalities, the second line follows from the fact that
w>t ∆(yt,ȳt)

α ≥ 0 and ct(·)
is non-increasing. The third line follows from α-informative feedback (Eqn. (6)). The fourth
line follows since the function ct is convex.8 We obtain the first term in the next inequality
(in either case) since c′t(·) ∈ [−G, 0] and w>t ∆(yt, ȳt) ≥ 0 from the choice of yt in the
algorithm. The second terms (in either case) is obtained by the fact that −ξtc′t(w>∗ ∆(yt, ȳt))
is upper bounded by ξ+

t G. This is the step in which the clipped version of the slack variables
are needed in the proof. Finally, w>∗ ∆(yt, ȳt) is either positive or negative depending on
the feedback which leads to two different cases depending on whether t ∈ I or t ∈ J .

7. Since the context xt will always be clear, we suppress this in our notation for brevity.
8. For any convex function f , f(y) − f(x) ≤ (y − x)f ′(y) where f ′(y) denotes a sub-derivative of f at y.

33

Shivaswamy & Joachims

Summing the above inequalities from 1 to T , we get:

T∑
t=1

ct(w
>
∗ ∆(yt,y

∗
t))−

T∑
t=1

ct (0)

≤G
α

T∑
t=1

w>t ∆(yt, ȳt) +
G

α

T∑
t=1

ξ+
t −

G

α

∑
t∈I

w>∗ ∆(yt, ȳt)

≤G
α

T∑
t=1

(wt −w∗)
>∆(yt, ȳt) +

G

α

T∑
t=1

ξ+
t +

G

α

∑
t∈J

w>∗ ∆(yt, ȳt). (26)

We obtained the last line above simply by adding and and subtractingG
∑

t∈J w>∗ ∆(yt, ȳt)/α
on the right side of the previous inequality. From this point, we mostly follow the proof
techniques from online convex optimization (Zinkevich, 2003).

We now bound the first term on the right hand side of (26). For this purpose, consider
the following:

‖w̄t+1 −w∗‖2 = ‖wt + ηt∆(ȳt,yt)−w∗‖2

= ‖wt −w∗‖2 + η2
t ‖∆(ȳt,yt)‖2 + 2ηt(wt −w∗)

>∆(ȳt,yt). (27)

Rearranging terms in the above equation, we get:

(wt −w∗)
>∆(yt, ȳt) =

1

2ηt
‖wt −w∗‖2 −

1

2ηt
‖w̄t+1 −w∗‖2 +

ηt
2
‖∆(ȳt,yt)‖2

≤ 1

2ηt
‖wt −w∗‖2 −

1

2ηt
‖wt+1 −w∗‖2 + 2ηtR

2

where, on the last line, we used the fact that ‖wt+1−w∗‖2 ≤ ‖w̄t+1−w∗‖2 since the wt+1

is just the projection of w̄t+1 to the convex set B (which contains the vector w∗). We can
bound the first term in (26) using the following telescoping argument.

T∑
t=1

(
1

2ηt
‖wt −w∗‖2 −

1

2ηt
‖wt+1 −w∗‖2 + 2ηtR

2

)

≤ 1

2η1
‖w1 −w∗‖2 +

T∑
t=2

(
1

2ηt
− 1

2ηt−1

)
‖wt −w∗‖2 + 2R2

T∑
t=1

ηt

≤ 1

2η1
|B|+

T∑
t=2

(
1

2ηt
− 1

2ηt−1

)
|B|+ 2R2(2

√
T − 1)

≤
√
T + 1

2
|B|+ 4R2

√
T .

In the above, we obtained the second line by simply rearranging the terms in the expression
above. On the third line, we used the boundedness property of the set B, as well as the
fact

∑T
t=1 ηt ≤ 2

√
T − 1. The final line follows from cancelling out terms and the fact that

ηT = 1/
√
T .

34

Coactive Learning

Now, consider the third term on the right hand side of (26):

w>∗ ∆(yt, ȳt)

α
≤ w>∗ ∆(yt,y

∗
t) +

ξ+
t

α
≤ ξ+

t

α
.

The first inequality above follows from α-informative feedback. Whereas the second inequal-
ity follows from the fact w>∗ ∆(yt,y

∗
t) ≤ 0 from the definition of y∗t . Finally, the bound (16)

follows from the trivial fact 0 ≤ G
α

∑
t∈I ξ

+
t .

To obtain the bound on the expected regret, consider the convex loss at step t condi-
tioned on user behavior so far:

ct(w
>
∗ ∆(yt,y

∗
t))−Etct

(
w>t ∆(yt, ȳt)

α

)
≤ct

(
Et[w

>
∗ ∆(yt, ȳt)− ξ̄t]

α

)
−Etct

(
w>t ∆(yt, ȳt)

α

)
≤Etct

(
w>∗ ∆(yt, ȳt)− ξ̄t

α

)
−Etct

(
w>t ∆(yt, ȳt)

α

)

≤

GEt[w

>
t ∆(yt, ȳt) + ξ̄+

t −w>∗ ∆(yt, ȳt)]/α t ∈ I

GEt[w
>
t ∆(yt, ȳt) + ξ̄+

t]/α t ∈ J

where the second line follows from the definition of expected α-informative feedback and the
third line follows from Jensen’s inequality. We obtain the last line following an argument
similar to that in the proof of Theorem 6. The bound follows from an expected version of
(27).

Appendix C. Proof of Theorem 8

Proof First, we divide time steps into two different sets based on the nature of feedback:

I := {t : U(xt, ȳt)− U(xt,yt)) ≥ 0; 1 ≤ t ≤ T},
J := {t : U(xt, ȳt)− U(xt,yt)) < 0; 1 ≤ t ≤ T}.

35

Shivaswamy & Joachims

We start by considering a single time step t, we have:

ct(w
>
∗ ∆(yt,y

∗
t))− ct(0)

≤ct(w>∗ ∆(yt,y
∗
t))− ct

(
w>t ∆(yt, ȳt)

α

)
≤ct

(
w>∗ ∆(yt, ȳt)

α
− ξ+

t

α

)
− ct

(
w>t ∆(yt, ȳt)

α

)
≤
(

(w∗ −wt)
>∆(yt, ȳt)

α
− ξ+

t

α

)
c′t

(
w>∗ ∆(yt, ȳt)

α
− ξ+

t

α

)
− λ

2

(
(w∗ −wt)

>∆(yt, ȳt)

α
− ξ+

t

α

)2

≤

G

((
w>t ∆(yt,ȳt)

α +
ξ+t
α −

w>∗ ∆(yt,ȳt)
α

)
− γ

2

(
(w∗−wt)>∆(yt,ȳt)

α − ξ+t
α

)2
)

t ∈ I

G

((
w>t ∆(yt,ȳt)

α +
ξ+t
α

)
− γ

2

(
(w∗−wt)>∆(yt,ȳt)

α − ξ+t
α

)2
)

t ∈ J.

(28)

In the above inequalities, the second line follows from the fact that
w>t ∆(yt,ȳt)

α ≥ 0 and ct(·) is
non-increasing. The third line follows from the fact that the function ct(·) is non-increasing
and the following inequality which follows from the definition of ξ+

t :

U(xt, ȳt) ≥ U(xt,yt) + α(U(xt,y
∗
t)− U(xt,yt))− ξ+

t .

The fourth line follows by strong convexity. The last line follows from a same line of
reasoning as in the proof of Theorem 6.

Now consider the last term in both the cases:

− γ

2

(
(w∗ −wt)

>∆(yt, ȳt)

α
− ξ+

t

α

)2

=− γ

2

(
(w∗ −wt)

>∆(yt, ȳt)

α

)2

− γξ+
t

2

2α2
+
γξ+
t (w∗ −wt)

>∆(yt, ȳt)

α2

=− γ

2

(
(w∗ −wt)

>∆(yt, ȳt)

α

)2

+
γξ+
t w>∗ ∆(yt, ȳt)

α2
− γξ+

t w>t ∆(yt, ȳt)

α2
− γξ+

t
2

2α2

≤− γ

2

(
(w∗ −wt)

>∆(yt, ȳt)

α

)2

+
γξ+
t

α

(
w>∗ ∆(yt,y

∗
t) +

ξ+
t

α

)
− γξ+

t
2

2α2

≤− γ

2

(
(w∗ −wt)

>∆(yt, ȳt)

α

)2

+ γ
ξ+
t

2

2α2
. (29)

In the above equations, the second and the third lines follow from simple algebraic expansion
of the expression on the first line. The fourth line follows from the definition of α-informative
feedback and the fact that w>t ∆(ȳt,yt) ≤ 0. The last line follows from the fact that
w>∗ ∆(yt,y

∗
t) ≤ 0 from the definition of y∗t .

36

Coactive Learning

Now, summing the terms in (28) and then substituting the above bound, we get,

T∑
t=1

ct(w
>
∗ ∆(yt,y

∗
t))−

T∑
t=1

ct (0)

≤ G
T∑
t=1

(
w>t ∆(yt, ȳt)

α
+
ξ+
t

α
− γ

2

(
(w∗ −wt)

>∆(yt, ȳt)

α

)2
)
−G

∑
t∈I

w>∗ ∆(yt, ȳt)

α
+
γ
∑T

t=1 ξ
+
t

2

2α2

≤ G
T∑
t=1

(
(wt −w∗)

>∆(yt, ȳt)

α
− γ

2

(
(w∗ −wt)

>∆(yt, ȳt)

α

)2
)

+
G

α

∑
t∈J

w>∗ ∆(yt, ȳt) +
γ
∑T

t=1 ξ
+
t

2

2α2
+
G
∑T

t=1 ξ
+
t

α

≤ G

α

T∑
t=1

(
(wt −w∗)

>∆(yt, ȳt)−
γ

2

(
(wt −w∗)

>∆(yt, ȳt)
)2
)

+
γ
∑T

t=1 ξ
+
t

2

2α2
+

2G
∑T

t=1 ξ
+
t

α
.

In the above, we obtained the third inequality by adding and subtracting G
∑

t∈J
w>∗ ∆(yt,ȳt)

α .
To obtain the last line, we used the fact that −1/α2 ≤ −1/α since α ∈ (0, 1]). Finally, we
used an argument similar to that in the proof of theorem 6 to bound G

α

∑
t∈J w>∗ ∆(yt, ȳt)

and obtained a factor of two with the sum of slacks term. From this point, we use arguments
similar to those from online convex optimization with strongly convex losses (Hazan et al.,
2007).

Next, we consider (w̄t+1 −w∗)
>At(w̄t+1 −w∗) and express it interms of wt and At−1:

(w̄t+1 −w∗)
>At(w̄t+1 −w∗)

=(wt −A−1
t ∆(yt, ȳt)−w∗)

>At(wt −A−1
t ∆(yt, ȳt)−w∗)

=(wt −w∗)
>At(wt −w∗) + ∆(yt, ȳt)

>A−1
t ∆(yt, ȳt)− 2(wt −w∗)

>∆(yt, ȳt)

=γ(wt −w∗)
>∆(yt, ȳt)∆(yt, ȳt)

>(wt −w∗) + (wt −w∗)
>At−1(wt −w∗)

+ ∆(yt, ȳt)
>A−1

t ∆(yt, ȳt) + 2(w∗ −wt)
>∆(yt, ȳt)

Rearranging terms in the above equation, we get:

2(wt −w∗)
>∆(yt, ȳt)−

γ

2
(wt −w∗)

>∆(yt, ȳt)∆(yt, ȳt)
>(wt −w∗)

≤(wt −w∗)
>At−1(wt −w∗)− (wt+1 −w∗)

>At(wt+1 −w∗) + ∆(yt, ȳt)
>A−1

t ∆(yt, ȳt).

37

Shivaswamy & Joachims

We now identify that the term on the left hand side in the inequality occurs in the
expression that we would like to bound in (29). We therefore have,

2

T∑
t=1

(
(wt −w∗)

>∆(yt, ȳt)− γ((wt −w∗)
>∆(yt, ȳt))

2
)

≤
T∑
t=1

(
(wt −w∗)

>At−1(wt −w∗)− (wt+1 −w∗)
>At(wt+1 −w∗) + ∆(yt, ȳt)

>A−1
t ∆(byt, ȳt)

)
≤(w1 −w∗)

>A0(w1 −w∗) +

T∑
t=1

∆(yt, ȳt)
>A−1

t ∆(yt, ȳt)

≤ε|B|+ N

γ
log

(
4R2Tγ

ε
+ 1

)
.

In the above, we have used the fact that
∑T

t=1 ∆(yt, ȳt)
>A−1

t ∆(yt, ȳt) ≤ N log(4R2T/ε+1),
where N is the dimens ionality of φ(x,y) and R is an upper bound on the norm of the joint
feature maps (i.e. ‖φ(x,y)‖`2 ≤ R. A proof of this fact can be found in Hazan et al. (2007).

References

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002a). Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47 (2-3), 235–256.

Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. (2002b). The non-stochastic multi-
armed bandit problem. SIAM Journal on Computing, 32 (1), 48–77.

Bakir, G. H., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., & Vishwanathan, S. (Eds.).
(2007). Predicting Structured Data. The MIT Press.

Bell, R. M., & Koren, Y. (2007). Scalable collaborative filtering with jointly derived neigh-
borhood interpolation weights. In ICDM.

Boley, M., Mampaey, M., Kang, B., Tokmakov, P., & Wrobel, S. (2013). One click mining:
Interactive local pattern discovery through implicit preference and performance learn-
ing. In Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration
and Analytics, pp. 27–35.

Cesa-Bianchi, N., & Lugosi, G. (2006a). Prediction, learning, and games. Cambridge Uni-
versity Press.

Cesa-Bianchi, N., & Lugosi, G. (2006b). Prediction, Learning, and Games. Cambridge
University Press, Cambridge, UK.

Chapelle, O., & Chang, Y. (2011). Yahoo! learning to rank challenge overview. JMLR -
Proceedings Track, 14, 1–24.

Chu, W., & Ghahramani, Z. (2005). Preference learning with gaussian processes. In ICML.

Crammer, K., & Singer, Y. (2001). Pranking with ranking. In NIPS.

38

Coactive Learning

Crammer, K., & Gentile, C. (2011). Multiclass classification with bandit feedback using
adaptive regularization. In Proceedings of the 28th International Conference on Ma-
chine Learning (ICML).

Dekel, O., Gilad-Bachrach, R., Shamir, O., & Xiao, L. (2012). Optimal distributed online
prediction using mini-batches. JMLR, 13, 165202.

Flaxman, A., Kalai, A. T., & McMahan, H. B. (2005). Online convex optimization in the
bandit setting: gradient descent without a gradient. In SODA.

Freund, Y., Iyer, R. D., Schapire, R. E., & Singer, Y. (2003). An efficient boosting algorithm
for combining preferences. Journal of Machine Learning Research, 4, 933–969.

Goetschalckx, R., Fern, A., & Tadepalli, P. (2014). Coactive learning for locally optimal
problem solving.. In Conference of the American Association for Artificial Intelligence
(AAAI), pp. 1824–1830.

Haddow, B., Arun, A., & Koehn, P. (2011). Samplerank training for phrase-based machine
translation. In Proceedings of the Sixth Workshop on Statistical Machine Translation,
pp. 261–271, Edinburgh, Scotland. Association for Computational Linguistics.

Hazan, E., Agarwal, A., & Kale, S. (2007). Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69 (2-3), 169–192.

Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for
ordinal regression. In Advances in Large Margin Classifiers. MIT Press.

Jain, A., Wojcik, B., Joachims, T., & Saxena, A. (2013). Learning trajectory preferences for
manipulators via iterative improvement. In Neural Information Processing Systems
(NIPS), pp. 575–583.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), pp. 133–142.

Joachims, T., Granka, L., Pan, B., Hembrooke, H., Radlinski, F., & Gay, G. (2007). Eval-
uating the accuracy of implicit feedback from clicks and query reformulations in web
search. ACM Transactions on Information Systems (TOIS), 25 (2).

Jones, R., & Klinkner, K. (2008). Beyond the session timeout: automatic hierarchical
segmentation of search topics in query logs. In CIKM.

Kakade, S. M., Shalev-Shwartz, S., & Tewari, A. (2008). Efficient bandit algorithms for
online multiclass prediction. In Proceedings of the 25th International Conference on
Machine Learning (ICML).

Kivinen, J., & Warmuth, M. (1997). Exponentiated gradient versus gradient gradient de-
scent for linear predictors. Journal of Information and Computation, 132 (1), 1–64.

Langford, J., & Zhang, T. (2007). The epoch-greedy algorithm for multi-armed bandits
with side information. In NIPS.

Liu, T.-Y. (2009). Learning to rank for information retrieval. Foundations and Trends in
Information Retrieval, 3.

Manning, C., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval.
Cambridge University Press.

39

Shivaswamy & Joachims

Novikoff, A. (1962). On convergence proofs on perceptrons. In Proceedings of the Symposium
on the Mathematical Theory of Automata, Vol. XII, pp. 615–622.

Polyak, B., & Tsypkin, Y. (1973). Pseudogradient adaptation and training algorithms.
Automatic Remote Control, 12, 83–94.

Radlinski, F., Kurup, M., & Joachims, T. (2008). How does clickthrough data reflect re-
trieval quality?. In Conference on Information and Knowledge Management (CIKM).

Raman, K., & Joachims, T. (2013). Learning socially optimal information systems from
egoistic users. In European Conference on Machine Learning (ECML), pp. 128–144.

Raman, K., Joachims, T., Shivaswamy, P., & Schnabel, T. (2013). Stable coactive learning
via perturbation. In International Conference on Machine Learning (ICML), pp.
837–845.

Raman, K., Shivaswamy, P., & Joachims, T. (2012). Online learning to diversify from
implicit feedback. In KDD.

Shivaswamy, P., & Joachims, T. (2012). Online structured prediction via coactive learning.
In ICML.

Somers, T., & Hollinger, G. (2014). Coactive learning with a human expert for robotic
monitoring. In RSS Workshop on Robotic Monitoring.

Weston, J., Bengio, S., & Usunier, N. (2011). Wsabie: Scaling up to large vocabulary
image annotation. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI).

Yue, Y., Broder, J., Kleinberg, R., & Joachims, T. (2009). The k-armed dueling bandits
problem. In COLT.

Yue, Y., & Joachims, T. (2009). Interactively optimizing information retrieval systems as
a dueling bandits problem. In ICML.

Zhang, Y., Lei, T., Barzilay, R., Jaakkola, T., & Globerson, A. (2014). Steps to excel-
lence: Simple inference with refined scoring of dependency trees. In Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 197–207, Baltimore, Maryland. Association for Computational
Linguistics.

Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient
ascent. In ICML.

40

