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Abstract

The problem of batch learning from logged con-
textual bandit feedback (BLBF) is ubiquitous in
recommender systems, search, and online retail.
Most previous methods for BLBF have followed
a “Model the Bias” approach, estimating the ex-
pected reward of a policy using inverse propensity
score (IPS) weighting. While unbiased, control-
ling the variance can be challenging. In contrast,
we take a “Model the World” approach using the
Direct Method (DM), where we learn a reward-
regression model and derive a policy from the esti-
mated rewards. While this approach has not been
competitive with IPS weighting for mismatched
models due to its bias, we show how directly min-
imizing the bias of the reward-regression model
can lead to highly effective policy learning. In
particular, we propose Bias Corrected Reward Im-
putation (BCRI) and formulate the policy learning
problem as bi-level optimization, where the upper
level maximizes the DM estimate and the lower
level fits a weighted reward-regression. We em-
pirically characterize the effectiveness of BCRI
compared to conventional reward-regression base-
lines and an IPS-based method.

1. Introduction
The logs of interactive systems (e.g., recommender systems,
ad placement systems, search engines) are an attractive
source of training data, as they provide user-centric feed-
back that is readily available in large quantities. Such log
data takes the form of contextual-bandit feedback, where
the system receives a context (e.g., a user profile), takes an
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action (e.g., recommends a movie) and observes the feed-
back (e.g., click or not). Different from typical supervised
learning where the correct label and a loss function provide
full-information feedback, batch learning from contextual
bandit feedback (BLBF) deals with partial (only observed
for selected action) and biased (by the choice of the policy
that logged the data) feedback.

Most previous works on BLBF have taken a “Model the
Bias” approach (Strehl et al., 2011; Dudı́k et al., 2011;
Bottou et al., 2013; Swaminathan & Joachims, 2015a;b;
Joachims et al., 2018; Kallus, 2018; Su et al., 2019). Inverse
propensity score (IPS) weighting techniques are leveraged
to model the selection bias in the assignment mechanism,
thus providing unbiased estimates of the counterfactual risk
(expected reward/loss) throughout a class of policies. This
enables learning by optimizing the estimated counterfactual
risk, potentially subject to variance regularization (Swami-
nathan & Joachims, 2015a).

An alternate route to policy learning for BLBF is the “Model
the World” approach, where a reward-regression model is
learned and then used to derive a policy. However, for real-
world problems where models are typically misspecified,
the bias of this Direct Method (DM) (Dudı́k et al., 2011)
can be substantial such that the learned policies are often
far from optimal. In this paper we address this bias prob-
lem and we explore how to directly minimize the bias of
DM for misspecified models. In particular, we propose
Bias Corrected Reward Imputation (BCRI) as a new method
for policy learning in BLBF. The key idea is to optimize a
weighted regression estimate of the rewards that minimizes
bias with respect to a specific target policy π. We show that
the expectation of this weighted reward-regression objec-
tive minimizes an upper bound on the mean squared error
(MSE) of the DM estimator, primarily by reducing its bias.
Reflecting that we need a different regression estimate for
each target policy π in our policy space, we formulate the
BCRI policy-learning problem as a bi-level optimization
problem. In the upper level, it searches through the policy
space optimizing the DM estimate of the expected reward.
In the lower level, it minimizes an estimated upper bound on
the MSE of the upper level objective. We propose a simple
procedure for optimizing this bi-level problem.
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In an empirical evaluation, we compare BCRI with several
other reward-regression objectives for the DM estimator,
as well as BanditNet (Joachims et al., 2018) as a repre-
sentative IPS-based method. Empirical results show that
BCRI achieves superior performance against the more naive
reward-regression baselines. Compared with BanditNet,
BCRI enjoys a large performance gain when the action space
is large, which we conjecture is due to a gradient saturation
problem of the BanditNet objective (which is non-convex).
When the action space is small, BCRI performs comparably
to BanditNet but still substantially outperforms the other
DM baselines.

2. Batch Learning from Logged Bandit
Feedback

In this section, we first formally define the problem of BLBF.
Then we introduce several reward-regression baselines, the
intuition and theoretical basis for our proposed BCRI ap-
proach, and finally the formulation of the BCRI policy learn-
ing problem.

2.1. Contextual-Bandit Setting and BLBF

In the contextual-bandit setting, a context x ∈ X is drawn
i.i.d. from some unknown distribution P (X ). The deployed
policy π0(y|x) then selects an action y ∈ Y , and the system
receives feedback reward r ∼ D(r|x, y) for this particu-
lar context-action pair. However, we do not observe feed-
back for any of the other actions. This results in logged
contextual-bandit data from logging policy π0 of the form

S = {(xi, yi, ri, π0(·|xi))}ni=1, (1)

where ri := r(xi, yi) is the observed reward. The policy-
evaluation problem is estimating the expected reward R of
a new policy π

R(π) = Ex∼P (x) Ey∼π(·|x)Er∼D(·|x,y)[r] (2)

from S. Analogously, the BLBF policy-learning problem
lies in using the logged data S for finding a policy from
some function class π∗ ∈ Π that maximizes the expected
reward

π∗ = argmax
π∈Π

[
R(π)

]
. (3)

The value of a policy R(π) cannot be calculated directly,
but counterfactual estimators R̂(π) (Horvitz & Thompson,
1952; Strehl et al., 2011; Dudı́k et al., 2011; Swaminathan
& Joachims, 2015b; Thomas & Brunskill, 2016; Wang et al.,
2017; Farajtabar et al., 2018; Su et al., 2019) were proposed
to estimate R(π) from S . These estimators enable Counter-
factual Risk Minimization (CRM) for BLBF (Swaminathan
& Joachims, 2015a), where the algorithm searches the policy
space Π to maximize the counterfactual estimate, possibly
subject to various forms of regularization.

Most previous works on BLBF followed a “Model the Bias”
approach, where they model the selection bias in the as-
signment mechanism with importance sampling techniques
for estimating the expected reward. One widely used ap-
proach is Inverse Propensity Score (IPS) weighting (Horvitz
& Thompson, 1952; Strehl et al., 2011)

R̂IPS(π|S) =
1

n

n∑
i=1

π(yi|xi)
π0(yi|xi)

ri (4)

The IPS estimator provides an unbiased estimate of the
expected reward of a policy under the common support
condition.
Condition 1 (Common Support). The logging policy π0 has
full support for the target policy π, which means π(y|x) >
0→ π0(y|x) > 0 for all x and y.

The challenge in using IPS weighting lies in the variance
of the estimate, which can be large when the IPS weights
π(yi|xi)
π0(yi|xi)

are large. Variance regularization (Swaminathan &
Joachims, 2015a) is thus proposed to alleviate the problem.

2.2. Direct Method and Reward Regression

Unlike most prior works, we use a “Model the World” ap-
proach for BLBF where a reward-regression model δ̂(x, y)
is learned to estimate δ(x, y) := Er∼D(x,y)[r|x, y]. Given
δ̂(x, y), the DM estimator can be used for evaluating any
policy π

R̂DM (π|δ̂,S) =
1

n

n∑
i=1

∑
y∈Y

π(yi|xi)δ̂(xi, yi) (5)

Furthermore, the policy that maximizes the DM estimate is
easily derived from δ̂(x, y) via

π(y|x) = 1{y = argmax
ȳ∈Y

δ̂(x, ȳ)}. (6)

Since there is typically low variability in the reward-
regression model, the DM estimator often has small vari-
ance as discussed in Section 2.3. If we could learn a perfect
reward-regression model (i.e., ∀x, y : δ̂(x, y) = δ(x, y)),
it is easy to see that the policy derived from the perfect
reward-regression model is optimal. However, a perfect
reward-regression model rarely exists in practice, since most
models for real-world problems are misspecified. There-
fore, the DM estimator can be substantially biased when the
reward-regression model is misspecified and biased. This
raises the question of how to train the reward-regression
model to most effectively mitigate bias.

The naive approach to training the reward-regression model
uses the standard least squares objective

L̂naive(δ̂|S) =
1

n

n∑
i=1

(ri − δ̂(xi, yi))2, (7)
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which is minimized over some class of regressors ∆

δ̂∗ = argmin
δ̂∈∆

L̂naive(δ̂|S). (8)

For misspecified models, the issue with the naive approach
is that it fits well for the action distribution of the logging
policy, but it may not provide accurate estimates for the
policy we derive from it via (6). This lack of accuracy can
mean that the derived policy is far from optimal. If we
decompose the rewards into r(x, y) = δ(x, y) + ε(x, y)
with zero-mean noise ε(x, y) independent of δ(x, y) and
δ̂(x, y), then the expectation of L̂naive is

E(L̂naive) = Ex Ey∼π0(·|x)[(δ(x, y)−δ̂(x, y))2+ε(x, y)2]
(9)

If the logging policy is poor, minimizing L̂naive means that
the learned reward-regression model fits well for actions
that are far from optimal, and it may be highly biased for
high-reward actions.

To overcome the dependency of the bias on the logging
policy, one could use importance weighting to shift the
reward-regression model to the uniform distribution, which
treats all actions equally.

L̂unif (δ̂|S) =
1

n

n∑
i=1

1

|Y|π0(yi|xi)
(ri − δ̂(xi, yi))2 (10)

With the same assumption as for the naive approach,

E(L̂unif ) = Ex Ey∼unif(Y)[(δ(x, y)−δ̂(x, y))2+ε(x, y)2],
(11)

where unif(Y) refers to the policy that selects actions uni-
formly. While this makes the expected estimate independent
of the logging policy and its selection biases, we are still
not explicitly accounting for the policy π that we aim to
evaluate.

2.3. Bias Corrected Reward Imputation (BCRI)

The key idea behind BCRI is to optimize the regression
estimates to minimize the bias of the DM estimator. As
we will show, this is achieved by the following regression
objective, where the losses are importance-weighted towards
the target policy π.

L̂BCRI(δ̂|π,S) =
1

n

n∑
i=1

π(yi|xi)
π0(yi|xi)

(ri− δ̂(xi, yi))2 (12)

This regression objective corrects the selection bias induced
by the logging policy π0 so that it becomes in expectation
equivalent to training the reward regressor with on-policy
data from π. In this way, and with the same assumption as
for L̂naive and L̂unif , the BCRI-objective explicitly mini-
mizes the bias of the regression estimator w.r.t. π as

E(L̂BCRI) = Ex Ey∼π(·|x)[(δ(x, y)−δ̂(x, y))2+ε(x, y)2].
(13)

Most importantly, this bias minimization for the regres-
sion estimates translates into an upper bound on the mean
squared error (MSE) of the DM estimator, as the following
result shows. It requires the typical assumption of common
support.

Theorem 1 (MSE Bound for DM via BCRI). For contexts
x1, x2, · · · , xn drawn i.i.d from some distribution P (X ),
actions yi ∼ π0(Y|xi) drawn from the logging policy π0

under Condition 1, rewards ri = δ(xi, yi)+εi with some un-
derlying true reward function δ(x, y) and zero-mean noise
εi, then for any bounded reward-regression model class ∆
with δ̂max := maxx,y,δ̂∈∆|δ̂(x, y)| and any policy class π

MSE(R̂DM ) ≤E(L̂BCRI) +
δ̂2
max

n

− Ex Ey∼π(·|x) ε
2(x, y)

(14)

Proof. We first upper bound the squared bias of the DM
estimator as

Bias2(R̂DM )

=

[
Ex
[∑
y∈Y

π(y|x)(δ̂(x, y)− δ(x, y))

]]2

≤Ex
[∑
y∈Y

(
√
π(y|x))2

]
·

Ex
[∑
y∈Y

(
√
π(y|x)(δ̂(x, y)− δ(x, y)))2

]

=Ex
[∑
y∈Y

π(y|x)(δ̂(x, y)− δ(x, y))2

]
(15)

via an application of the Cauchy-Schwarz inequality. Simi-
larly, we bound the variance of the DM estimator as

V ar(R̂DM ) =
1

n
Vx

[∑
y∈Y

π(y|x)δ̂(x, y)

]

=
1

n
Ex
[
(
∑
y∈Y

π(y|x)δ̂(x, y))2

]

− 1

n

[
Ex
[∑
y∈Y

π(y|x)δ̂(x, y)

]]2

≤ 1

n
Ex
[∑
y∈Y

π(y|x)δ̂(x, y)2

]
≤ 1

n
δ̂2
max.

(16)

The first inequality is again an application of
Cauchy−Schwarz, and we exploit that the second
term is non-positive. The second inequality is a direct
consequence of how δ̂max is defined. Combing (13), (15),
and (16) proves (14).
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Note that the second term in the right-hand side of (14)
decays quickly with the number of contexts that are sam-
pled. The third term results from the noise in the rewards
and it is unavoidable. While E(|Y|L̂naive) is also an upper
bound since π(y|x) ≤ 1, it can be substantially less tight
for mismatched models with non-zero bias. This explains
our empirical findings in Section 3, where we find BCRI to
perform better than training with the uniform objective (10).
However, note that the bound does not account for the vari-
ability of L̂BCRI , which we plan to explore in future work.

2.4. BCRI Policy Learning as Bi-level Optimization

The previous section showed that BCRI can lead to im-
proved DM estimates, and we now explore how BCRI can
be used inside of a policy-learning algorithm. Here we are
faced with a “Chicken and Egg” problem, where we fit the
reward regressor based on the target policy while at the
same time deriving the target policy from the regressor. We
formalize this as the following bi-level optimization prob-
lem. The upper level maximizes the expected reward of the
policy according to the DM estimate, while the lower level
provides the BCRI regression estimate.

πBCRI = argmax
π∈Π

[
R̂DM (π|δ̂,S)

]
s. t. δ̂ = argmin

δ̂∈∆

[
L̂BCRI(δ̂|π,S)

] (17)

Note that the upper level is maximized in closed form via (6)
for any fixed δ̂, and that the lower level has a convex loss
function for any fixed π. We thus use the following sim-
ple strategy to find an approximate solution, although we
anticipate that this can be substantially improved. In par-
ticular, we perform batch stochastic gradient descent for
δ̂ on L̂BCRI(δ̂|π,S) in the lower level given the current
π from the upper level. After each gradient step, we then
update the policy π via (6) in the upper level and repeat
until we have reached a fixed point. Note that this bears
some resemblance with temporal-difference reinforcement
learning (Sutton & Barto, 2018), where we sample exam-
ples for a gradient descent update — but with the difference
that here we ”sample off-policy” from the collected bandit
feedback and use importance weighting to correct the bias.

As already mentioned, the variance of L̂BCRI can become
large as the learned target policy deviates from the logging
policy. To alleviate this problem, we restrict the policy class
to softmax policies with temperature parameter T

π(y|x) =
eδ̂(x,y)/T∑
ȳ∈Y e

δ̂(x,ȳ)/T
(18)

during optimization. Compared to the argmax policy in
(6), such stochastic policies typically have less extreme
importance weights and thus lower variance. We empirically

evaluate the effectiveness of softmax policies in Section 3,
but conjecture that other methods of variance regularization
may further improve performance.

3. Experiments
We empirically examine the performance of BCRI on bandit
feedback derived form multi-class classification. This set-
ting is widely used in the off-policy evaluation and learning
literature (Dudı́k et al., 2011; Su et al., 2019). Specifically,
we use real world multi-class classification datasets from
which we sample synthetic bandit data. This provides the
ground truth for the performance evaluation and enables
varying different aspects of the contextual bandit setting for
analyzing the performance in different situations.

3.1. Data Setup

For bandit data generation, we follow (Dudı́k et al., 2011;
Su et al., 2019) using the standard supervised→ bandit con-
version for several multiclass classification datasets from the
UCI repository (Asuncion & Newman, 2007). Formally, for
a supervised dataset {(xi, y∗i )}mi=1 where xi is the feature of
the ith example and y∗i is its corresponding label, we use a
small amount of the dataset to train a logging policy π0. The
bandit data is sampled according to the following process,
context and label x, y∗ ∼ unif({(x1, y

∗
1), ...(xm, y

∗
m)}),

action y ∼ π0(·|x), reward r(x, y) = 1{y = y∗}. Repeat-
ing the process n times, we can get a set of bandit data
S = {xi, yi, r(xi, yi), π0(·|xi)}ni=1 which is used for learn-
ing a new policy.

For each dataset, we split the dataset into train,validation
and test sets randomly. 2% of the train set is used to learn a
logging policy using a multi-class logistic regression and the
rest of the train set is used to simulate bandit feedback. To
ensure the common support assumption, during the deploy-
ment of the logging policy, 2% of the actions are randomly
selected while the other actions are selected according to the
trained logging policy. To test the performance of different
methods with data at different scale, different amounts of
the feedback are simulated. Then different methods are used
to train models using the bandit data. The validation set is
used to conduct hyper-parameter selection and we report
the expected reward on the test set.

3.2. Experiment Setup

In the experiments, we compare the following methods,
including the Hardmax and the Softmax version of BCRI
and several baselines.

• BCRI (Hardmax): BCRI with policy π as the argmax
of the reward-regression model during optimization.

• BCRI (Softmax): BCRI with policy π as the softmax
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Table 1. Expected reward on test set for the Letter and SatImage datasets at different training-sample sizes.
Dataset
#of train contexts

Letter
9600

Letter
19200

Letter
48000

SatImage
400

SatImage
800

SatImage
2000

Naive DM 0.502 0.496 0.540 0.746 0.751 0.776
Uniform DM 0.552 0.553 0.583 0.753 0.761 0.799
BanditNet 0.360 0.399 0.431 0.790 0.817 0.803
BCRI(Hardmax) 0.513 0.608 0.652 0.762 0.800 0.795
BCRI(Softmax) 0.622 0.651 0.666 0.771 0.802 0.809

of the reward-regression model during optimization.

• Naive: DM with the naive regression objective (7).

• Unif: DM with the uniform regression objective (10).

• BanditNet: IPS-based BanditNet (Joachims et al.,
2018).

To ensure a fair comparison, we use the same feature map
and linear model for both policy-based and regression based
methods. For the policy-based methods, following (Swami-
nathan & Joachims, 2015b; Su et al., 2019), the function
class of the policy is F := {πw : w ∈ Rp} with πw as the
stochastic linear rules defined by

πw(y|x) =
exp(wTφ(x, y))

Z(x)
(19)

where Z(x) =
∑
y′∈Y exp(w · φ(x, y′)) is the partition

function and φ(x, y) denotes the joint feature map be-
tween context x and action y. The hypothesis space of
the reward-regression model is in G := {δ̂w : w ∈ Rp}
where δ̂w(x, y) = wTφ(x, y). Following (Swaminathan
& Joachims, 2015a), assuming ~y is the 0-1 vector rep-
resentation of the label y, the feature map we used is
φ(x, y) = x⊗ ~y where ⊗ denotes outer product.

For all the methods, we add L2 regularization for the pa-
rameters w. We grid-search learning rate, L2 regularization
parameter and the batch size. Stochastic gradient descent
is conducted with a momentum parameter set at 0.9 for
optimization. All the methods are trained 1500 epochs to
ensure convergence. For BCRI with softmax policy up-
date, we also grid-search the temperature T . To reduce the
variance of different methods with importance weights, we
adopt the widely used clipping technique to replace π(yi|xi)

π0(yi|xi)

or 1
|Y|π0(yi|xi)

in the objective with min{ π(yi|xi)
π0(yi|xi)

,M} or
min{ 1

|Y|π0(yi|xi)
,M} and also grid-search the clipping pa-

rameter M . For BanditNet, we also grid-search the La-
grange multiplier hyperparameter.

3.3. Empirical Results

The test set performance of all methods for both datasets
at three training-sample sizes is shown in Table 3. First,

BCRI(Softmax) consistently outperforms the Naive DM and
the Uniform DM baselines across all datasets and sample
sizes. This empirically confirms the theoretical motivation
for BCRI. Among the baselines, Uniform DM performs
better than Naive DM. Second, BCRI(Softmax) also sub-
stantially outperforms BanditNet on the Letter Recognition
dataset. Upon inspection, we conjecture that the reason
lies in BanditNet getting stuck in bad local optima due to
the large action space (26 classes) that leads to gradient-
saturation when optimizing the non-convex objective. On
the SatImage dataset, BCRI(Softmax) performs compara-
bly to BanditNet. Third, comparing the softmax and the
hardmax versions of BCRI, we find that the softmax poli-
cies perform better than the hardmax policies, which we
conjecture is due to the improved variance control in the
BCRI regression objective. In future work, we thus plan to
explore methods to more directly control variance to further
improve estimation and learning performance.

4. Conclusion
In this work, we propose BCRI as a method for minimizing
the bias of the reward regressor w.r.t. the target policy, thus
optimizing the MSE of the DM estimator for the practically
important case of misspecified models. We formulate the
BCRI policy-learning problem as a bi-level optimization
problem and provide a strategy for optimizing the solution.
We empirically find that BCRI is consistently better than
other reward-regression baselines across different datasets
at different scales. Compared to BanditNet, BCRI can pro-
vide substantial performance gains when the action space is
large, and the convexity of the reward-regression objective
in BCRI appears to make its optimization more robust.

In future work, we plan to incorporate the variance of the
regression estimates into our theoretical framework and into
the training objective. Furthermore, we will explore other
strategies for solving the bi-level optimization problem, and
evaluate high-capacity deep models.
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